This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negiso.1 | |- F = ( x e. RR |-> -u x ) |
|
| Assertion | negiso | |- ( F Isom < , `' < ( RR , RR ) /\ `' F = F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negiso.1 | |- F = ( x e. RR |-> -u x ) |
|
| 2 | simpr | |- ( ( T. /\ x e. RR ) -> x e. RR ) |
|
| 3 | 2 | renegcld | |- ( ( T. /\ x e. RR ) -> -u x e. RR ) |
| 4 | simpr | |- ( ( T. /\ y e. RR ) -> y e. RR ) |
|
| 5 | 4 | renegcld | |- ( ( T. /\ y e. RR ) -> -u y e. RR ) |
| 6 | recn | |- ( x e. RR -> x e. CC ) |
|
| 7 | recn | |- ( y e. RR -> y e. CC ) |
|
| 8 | negcon2 | |- ( ( x e. CC /\ y e. CC ) -> ( x = -u y <-> y = -u x ) ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( x e. RR /\ y e. RR ) -> ( x = -u y <-> y = -u x ) ) |
| 10 | 9 | adantl | |- ( ( T. /\ ( x e. RR /\ y e. RR ) ) -> ( x = -u y <-> y = -u x ) ) |
| 11 | 1 3 5 10 | f1ocnv2d | |- ( T. -> ( F : RR -1-1-onto-> RR /\ `' F = ( y e. RR |-> -u y ) ) ) |
| 12 | 11 | mptru | |- ( F : RR -1-1-onto-> RR /\ `' F = ( y e. RR |-> -u y ) ) |
| 13 | 12 | simpli | |- F : RR -1-1-onto-> RR |
| 14 | ltneg | |- ( ( z e. RR /\ y e. RR ) -> ( z < y <-> -u y < -u z ) ) |
|
| 15 | negex | |- -u z e. _V |
|
| 16 | negex | |- -u y e. _V |
|
| 17 | 15 16 | brcnv | |- ( -u z `' < -u y <-> -u y < -u z ) |
| 18 | 14 17 | bitr4di | |- ( ( z e. RR /\ y e. RR ) -> ( z < y <-> -u z `' < -u y ) ) |
| 19 | negeq | |- ( x = z -> -u x = -u z ) |
|
| 20 | 19 1 15 | fvmpt | |- ( z e. RR -> ( F ` z ) = -u z ) |
| 21 | negeq | |- ( x = y -> -u x = -u y ) |
|
| 22 | 21 1 16 | fvmpt | |- ( y e. RR -> ( F ` y ) = -u y ) |
| 23 | 20 22 | breqan12d | |- ( ( z e. RR /\ y e. RR ) -> ( ( F ` z ) `' < ( F ` y ) <-> -u z `' < -u y ) ) |
| 24 | 18 23 | bitr4d | |- ( ( z e. RR /\ y e. RR ) -> ( z < y <-> ( F ` z ) `' < ( F ` y ) ) ) |
| 25 | 24 | rgen2 | |- A. z e. RR A. y e. RR ( z < y <-> ( F ` z ) `' < ( F ` y ) ) |
| 26 | df-isom | |- ( F Isom < , `' < ( RR , RR ) <-> ( F : RR -1-1-onto-> RR /\ A. z e. RR A. y e. RR ( z < y <-> ( F ` z ) `' < ( F ` y ) ) ) ) |
|
| 27 | 13 25 26 | mpbir2an | |- F Isom < , `' < ( RR , RR ) |
| 28 | negeq | |- ( y = x -> -u y = -u x ) |
|
| 29 | 28 | cbvmptv | |- ( y e. RR |-> -u y ) = ( x e. RR |-> -u x ) |
| 30 | 12 | simpri | |- `' F = ( y e. RR |-> -u y ) |
| 31 | 29 30 1 | 3eqtr4i | |- `' F = F |
| 32 | 27 31 | pm3.2i | |- ( F Isom < , `' < ( RR , RR ) /\ `' F = F ) |