This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of infpss , shorter but requiring Replacement ( ax-rep ). (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 16-May-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infpssALT | |- ( _om ~<_ A -> E. x ( x C. A /\ x ~~ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ominf4 | |- -. _om e. Fin4 |
|
| 2 | reldom | |- Rel ~<_ |
|
| 3 | 2 | brrelex2i | |- ( _om ~<_ A -> A e. _V ) |
| 4 | isfin4 | |- ( A e. _V -> ( A e. Fin4 <-> -. E. x ( x C. A /\ x ~~ A ) ) ) |
|
| 5 | 3 4 | syl | |- ( _om ~<_ A -> ( A e. Fin4 <-> -. E. x ( x C. A /\ x ~~ A ) ) ) |
| 6 | domfin4 | |- ( ( A e. Fin4 /\ _om ~<_ A ) -> _om e. Fin4 ) |
|
| 7 | 6 | expcom | |- ( _om ~<_ A -> ( A e. Fin4 -> _om e. Fin4 ) ) |
| 8 | 5 7 | sylbird | |- ( _om ~<_ A -> ( -. E. x ( x C. A /\ x ~~ A ) -> _om e. Fin4 ) ) |
| 9 | 1 8 | mt3i | |- ( _om ~<_ A -> E. x ( x C. A /\ x ~~ A ) ) |