This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for our Axiom of Infinity => standard Axiom of Infinity. See inf3 for detailed description. (Contributed by NM, 29-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
||
| inf3lem.3 | |- A e. _V |
||
| inf3lem.4 | |- B e. _V |
||
| Assertion | inf3lem5 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( ( A e. _om /\ B e. A ) -> ( F ` B ) C. ( F ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inf3lem.1 | |- G = ( y e. _V |-> { w e. x | ( w i^i x ) C_ y } ) |
|
| 2 | inf3lem.2 | |- F = ( rec ( G , (/) ) |` _om ) |
|
| 3 | inf3lem.3 | |- A e. _V |
|
| 4 | inf3lem.4 | |- B e. _V |
|
| 5 | elnn | |- ( ( B e. A /\ A e. _om ) -> B e. _om ) |
|
| 6 | 5 | ancoms | |- ( ( A e. _om /\ B e. A ) -> B e. _om ) |
| 7 | nnord | |- ( A e. _om -> Ord A ) |
|
| 8 | ordsucss | |- ( Ord A -> ( B e. A -> suc B C_ A ) ) |
|
| 9 | 7 8 | syl | |- ( A e. _om -> ( B e. A -> suc B C_ A ) ) |
| 10 | 9 | adantr | |- ( ( A e. _om /\ B e. _om ) -> ( B e. A -> suc B C_ A ) ) |
| 11 | peano2b | |- ( B e. _om <-> suc B e. _om ) |
|
| 12 | fveq2 | |- ( v = suc B -> ( F ` v ) = ( F ` suc B ) ) |
|
| 13 | 12 | psseq2d | |- ( v = suc B -> ( ( F ` B ) C. ( F ` v ) <-> ( F ` B ) C. ( F ` suc B ) ) ) |
| 14 | 13 | imbi2d | |- ( v = suc B -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` v ) ) <-> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` suc B ) ) ) ) |
| 15 | fveq2 | |- ( v = u -> ( F ` v ) = ( F ` u ) ) |
|
| 16 | 15 | psseq2d | |- ( v = u -> ( ( F ` B ) C. ( F ` v ) <-> ( F ` B ) C. ( F ` u ) ) ) |
| 17 | 16 | imbi2d | |- ( v = u -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` v ) ) <-> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` u ) ) ) ) |
| 18 | fveq2 | |- ( v = suc u -> ( F ` v ) = ( F ` suc u ) ) |
|
| 19 | 18 | psseq2d | |- ( v = suc u -> ( ( F ` B ) C. ( F ` v ) <-> ( F ` B ) C. ( F ` suc u ) ) ) |
| 20 | 19 | imbi2d | |- ( v = suc u -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` v ) ) <-> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` suc u ) ) ) ) |
| 21 | fveq2 | |- ( v = A -> ( F ` v ) = ( F ` A ) ) |
|
| 22 | 21 | psseq2d | |- ( v = A -> ( ( F ` B ) C. ( F ` v ) <-> ( F ` B ) C. ( F ` A ) ) ) |
| 23 | 22 | imbi2d | |- ( v = A -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` v ) ) <-> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) ) |
| 24 | 1 2 4 4 | inf3lem4 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( B e. _om -> ( F ` B ) C. ( F ` suc B ) ) ) |
| 25 | 24 | com12 | |- ( B e. _om -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` suc B ) ) ) |
| 26 | 11 25 | sylbir | |- ( suc B e. _om -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` suc B ) ) ) |
| 27 | vex | |- u e. _V |
|
| 28 | 1 2 27 4 | inf3lem4 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( u e. _om -> ( F ` u ) C. ( F ` suc u ) ) ) |
| 29 | psstr | |- ( ( ( F ` B ) C. ( F ` u ) /\ ( F ` u ) C. ( F ` suc u ) ) -> ( F ` B ) C. ( F ` suc u ) ) |
|
| 30 | 29 | expcom | |- ( ( F ` u ) C. ( F ` suc u ) -> ( ( F ` B ) C. ( F ` u ) -> ( F ` B ) C. ( F ` suc u ) ) ) |
| 31 | 28 30 | syl6com | |- ( u e. _om -> ( ( x =/= (/) /\ x C_ U. x ) -> ( ( F ` B ) C. ( F ` u ) -> ( F ` B ) C. ( F ` suc u ) ) ) ) |
| 32 | 31 | a2d | |- ( u e. _om -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` u ) ) -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` suc u ) ) ) ) |
| 33 | 32 | ad2antrr | |- ( ( ( u e. _om /\ suc B e. _om ) /\ suc B C_ u ) -> ( ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` u ) ) -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` suc u ) ) ) ) |
| 34 | 14 17 20 23 26 33 | findsg | |- ( ( ( A e. _om /\ suc B e. _om ) /\ suc B C_ A ) -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) |
| 35 | 34 | ex | |- ( ( A e. _om /\ suc B e. _om ) -> ( suc B C_ A -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) ) |
| 36 | 11 35 | sylan2b | |- ( ( A e. _om /\ B e. _om ) -> ( suc B C_ A -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) ) |
| 37 | 10 36 | syld | |- ( ( A e. _om /\ B e. _om ) -> ( B e. A -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) ) |
| 38 | 37 | impancom | |- ( ( A e. _om /\ B e. A ) -> ( B e. _om -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) ) |
| 39 | 6 38 | mpd | |- ( ( A e. _om /\ B e. A ) -> ( ( x =/= (/) /\ x C_ U. x ) -> ( F ` B ) C. ( F ` A ) ) ) |
| 40 | 39 | com12 | |- ( ( x =/= (/) /\ x C_ U. x ) -> ( ( A e. _om /\ B e. A ) -> ( F ` B ) C. ( F ` A ) ) ) |