This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerous sets equipped with their indiscrete topologies are homeomorphic (which means in that particular case that a segment is homeomorphic to a circle contrary to what Wikipedia claims). (Contributed by FL, 17-Aug-2008) (Proof shortened by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indishmph | |- ( A ~~ B -> { (/) , A } ~= { (/) , B } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bren | |- ( A ~~ B <-> E. f f : A -1-1-onto-> B ) |
|
| 2 | f1of | |- ( f : A -1-1-onto-> B -> f : A --> B ) |
|
| 3 | f1odm | |- ( f : A -1-1-onto-> B -> dom f = A ) |
|
| 4 | vex | |- f e. _V |
|
| 5 | 4 | dmex | |- dom f e. _V |
| 6 | 3 5 | eqeltrrdi | |- ( f : A -1-1-onto-> B -> A e. _V ) |
| 7 | f1ofo | |- ( f : A -1-1-onto-> B -> f : A -onto-> B ) |
|
| 8 | focdmex | |- ( A e. _V -> ( f : A -onto-> B -> B e. _V ) ) |
|
| 9 | 6 7 8 | sylc | |- ( f : A -1-1-onto-> B -> B e. _V ) |
| 10 | 9 6 | elmapd | |- ( f : A -1-1-onto-> B -> ( f e. ( B ^m A ) <-> f : A --> B ) ) |
| 11 | 2 10 | mpbird | |- ( f : A -1-1-onto-> B -> f e. ( B ^m A ) ) |
| 12 | indistopon | |- ( A e. _V -> { (/) , A } e. ( TopOn ` A ) ) |
|
| 13 | 6 12 | syl | |- ( f : A -1-1-onto-> B -> { (/) , A } e. ( TopOn ` A ) ) |
| 14 | cnindis | |- ( ( { (/) , A } e. ( TopOn ` A ) /\ B e. _V ) -> ( { (/) , A } Cn { (/) , B } ) = ( B ^m A ) ) |
|
| 15 | 13 9 14 | syl2anc | |- ( f : A -1-1-onto-> B -> ( { (/) , A } Cn { (/) , B } ) = ( B ^m A ) ) |
| 16 | 11 15 | eleqtrrd | |- ( f : A -1-1-onto-> B -> f e. ( { (/) , A } Cn { (/) , B } ) ) |
| 17 | f1ocnv | |- ( f : A -1-1-onto-> B -> `' f : B -1-1-onto-> A ) |
|
| 18 | f1of | |- ( `' f : B -1-1-onto-> A -> `' f : B --> A ) |
|
| 19 | 17 18 | syl | |- ( f : A -1-1-onto-> B -> `' f : B --> A ) |
| 20 | 6 9 | elmapd | |- ( f : A -1-1-onto-> B -> ( `' f e. ( A ^m B ) <-> `' f : B --> A ) ) |
| 21 | 19 20 | mpbird | |- ( f : A -1-1-onto-> B -> `' f e. ( A ^m B ) ) |
| 22 | indistopon | |- ( B e. _V -> { (/) , B } e. ( TopOn ` B ) ) |
|
| 23 | 9 22 | syl | |- ( f : A -1-1-onto-> B -> { (/) , B } e. ( TopOn ` B ) ) |
| 24 | cnindis | |- ( ( { (/) , B } e. ( TopOn ` B ) /\ A e. _V ) -> ( { (/) , B } Cn { (/) , A } ) = ( A ^m B ) ) |
|
| 25 | 23 6 24 | syl2anc | |- ( f : A -1-1-onto-> B -> ( { (/) , B } Cn { (/) , A } ) = ( A ^m B ) ) |
| 26 | 21 25 | eleqtrrd | |- ( f : A -1-1-onto-> B -> `' f e. ( { (/) , B } Cn { (/) , A } ) ) |
| 27 | ishmeo | |- ( f e. ( { (/) , A } Homeo { (/) , B } ) <-> ( f e. ( { (/) , A } Cn { (/) , B } ) /\ `' f e. ( { (/) , B } Cn { (/) , A } ) ) ) |
|
| 28 | 16 26 27 | sylanbrc | |- ( f : A -1-1-onto-> B -> f e. ( { (/) , A } Homeo { (/) , B } ) ) |
| 29 | hmphi | |- ( f e. ( { (/) , A } Homeo { (/) , B } ) -> { (/) , A } ~= { (/) , B } ) |
|
| 30 | 28 29 | syl | |- ( f : A -1-1-onto-> B -> { (/) , A } ~= { (/) , B } ) |
| 31 | 30 | exlimiv | |- ( E. f f : A -1-1-onto-> B -> { (/) , A } ~= { (/) , B } ) |
| 32 | 1 31 | sylbi | |- ( A ~~ B -> { (/) , A } ~= { (/) , B } ) |