This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve the cardinality of the underlying sets. (Contributed by FL, 17-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmphaushmeo.1 | |- X = U. J |
|
| cmphaushmeo.2 | |- Y = U. K |
||
| Assertion | hmphen2 | |- ( J ~= K -> X ~~ Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmphaushmeo.1 | |- X = U. J |
|
| 2 | cmphaushmeo.2 | |- Y = U. K |
|
| 3 | hmph | |- ( J ~= K <-> ( J Homeo K ) =/= (/) ) |
|
| 4 | n0 | |- ( ( J Homeo K ) =/= (/) <-> E. f f e. ( J Homeo K ) ) |
|
| 5 | 1 2 | hmeof1o | |- ( f e. ( J Homeo K ) -> f : X -1-1-onto-> Y ) |
| 6 | f1oen3g | |- ( ( f e. ( J Homeo K ) /\ f : X -1-1-onto-> Y ) -> X ~~ Y ) |
|
| 7 | 5 6 | mpdan | |- ( f e. ( J Homeo K ) -> X ~~ Y ) |
| 8 | 7 | exlimiv | |- ( E. f f e. ( J Homeo K ) -> X ~~ Y ) |
| 9 | 4 8 | sylbi | |- ( ( J Homeo K ) =/= (/) -> X ~~ Y ) |
| 10 | 3 9 | sylbi | |- ( J ~= K -> X ~~ Y ) |