This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inaprc | |- Inacc e/ _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inawina | |- ( x e. Inacc -> x e. InaccW ) |
|
| 2 | winaon | |- ( x e. InaccW -> x e. On ) |
|
| 3 | 1 2 | syl | |- ( x e. Inacc -> x e. On ) |
| 4 | 3 | ssriv | |- Inacc C_ On |
| 5 | ssorduni | |- ( Inacc C_ On -> Ord U. Inacc ) |
|
| 6 | ordsson | |- ( Ord U. Inacc -> U. Inacc C_ On ) |
|
| 7 | 4 5 6 | mp2b | |- U. Inacc C_ On |
| 8 | vex | |- y e. _V |
|
| 9 | grothtsk | |- U. Tarski = _V |
|
| 10 | 8 9 | eleqtrri | |- y e. U. Tarski |
| 11 | eluni2 | |- ( y e. U. Tarski <-> E. w e. Tarski y e. w ) |
|
| 12 | 10 11 | mpbi | |- E. w e. Tarski y e. w |
| 13 | ne0i | |- ( y e. w -> w =/= (/) ) |
|
| 14 | tskcard | |- ( ( w e. Tarski /\ w =/= (/) ) -> ( card ` w ) e. Inacc ) |
|
| 15 | 13 14 | sylan2 | |- ( ( w e. Tarski /\ y e. w ) -> ( card ` w ) e. Inacc ) |
| 16 | tsksdom | |- ( ( w e. Tarski /\ y e. w ) -> y ~< w ) |
|
| 17 | 16 | adantl | |- ( ( y e. On /\ ( w e. Tarski /\ y e. w ) ) -> y ~< w ) |
| 18 | tskwe2 | |- ( w e. Tarski -> w e. dom card ) |
|
| 19 | 18 | adantr | |- ( ( w e. Tarski /\ y e. w ) -> w e. dom card ) |
| 20 | cardsdomel | |- ( ( y e. On /\ w e. dom card ) -> ( y ~< w <-> y e. ( card ` w ) ) ) |
|
| 21 | 19 20 | sylan2 | |- ( ( y e. On /\ ( w e. Tarski /\ y e. w ) ) -> ( y ~< w <-> y e. ( card ` w ) ) ) |
| 22 | 17 21 | mpbid | |- ( ( y e. On /\ ( w e. Tarski /\ y e. w ) ) -> y e. ( card ` w ) ) |
| 23 | eleq2 | |- ( z = ( card ` w ) -> ( y e. z <-> y e. ( card ` w ) ) ) |
|
| 24 | 23 | rspcev | |- ( ( ( card ` w ) e. Inacc /\ y e. ( card ` w ) ) -> E. z e. Inacc y e. z ) |
| 25 | 15 22 24 | syl2an2 | |- ( ( y e. On /\ ( w e. Tarski /\ y e. w ) ) -> E. z e. Inacc y e. z ) |
| 26 | 25 | rexlimdvaa | |- ( y e. On -> ( E. w e. Tarski y e. w -> E. z e. Inacc y e. z ) ) |
| 27 | 12 26 | mpi | |- ( y e. On -> E. z e. Inacc y e. z ) |
| 28 | eluni2 | |- ( y e. U. Inacc <-> E. z e. Inacc y e. z ) |
|
| 29 | 27 28 | sylibr | |- ( y e. On -> y e. U. Inacc ) |
| 30 | 29 | ssriv | |- On C_ U. Inacc |
| 31 | 7 30 | eqssi | |- U. Inacc = On |
| 32 | ssonprc | |- ( Inacc C_ On -> ( Inacc e/ _V <-> U. Inacc = On ) ) |
|
| 33 | 4 32 | ax-mp | |- ( Inacc e/ _V <-> U. Inacc = On ) |
| 34 | 31 33 | mpbir | |- Inacc e/ _V |