This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of a class of ordinal numbers is ordinal. Proposition 7.19 of TakeutiZaring p. 40. Lemma 2.7 of Schloeder p. 4. (Contributed by NM, 30-May-1994) (Proof shortened by Andrew Salmon, 12-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssorduni | |- ( A C_ On -> Ord U. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni2 | |- ( x e. U. A <-> E. y e. A x e. y ) |
|
| 2 | ssel | |- ( A C_ On -> ( y e. A -> y e. On ) ) |
|
| 3 | onelss | |- ( y e. On -> ( x e. y -> x C_ y ) ) |
|
| 4 | 2 3 | syl6 | |- ( A C_ On -> ( y e. A -> ( x e. y -> x C_ y ) ) ) |
| 5 | anc2r | |- ( ( y e. A -> ( x e. y -> x C_ y ) ) -> ( y e. A -> ( x e. y -> ( x C_ y /\ y e. A ) ) ) ) |
|
| 6 | 4 5 | syl | |- ( A C_ On -> ( y e. A -> ( x e. y -> ( x C_ y /\ y e. A ) ) ) ) |
| 7 | ssuni | |- ( ( x C_ y /\ y e. A ) -> x C_ U. A ) |
|
| 8 | 6 7 | syl8 | |- ( A C_ On -> ( y e. A -> ( x e. y -> x C_ U. A ) ) ) |
| 9 | 8 | rexlimdv | |- ( A C_ On -> ( E. y e. A x e. y -> x C_ U. A ) ) |
| 10 | 1 9 | biimtrid | |- ( A C_ On -> ( x e. U. A -> x C_ U. A ) ) |
| 11 | 10 | ralrimiv | |- ( A C_ On -> A. x e. U. A x C_ U. A ) |
| 12 | dftr3 | |- ( Tr U. A <-> A. x e. U. A x C_ U. A ) |
|
| 13 | 11 12 | sylibr | |- ( A C_ On -> Tr U. A ) |
| 14 | onelon | |- ( ( y e. On /\ x e. y ) -> x e. On ) |
|
| 15 | 14 | ex | |- ( y e. On -> ( x e. y -> x e. On ) ) |
| 16 | 2 15 | syl6 | |- ( A C_ On -> ( y e. A -> ( x e. y -> x e. On ) ) ) |
| 17 | 16 | rexlimdv | |- ( A C_ On -> ( E. y e. A x e. y -> x e. On ) ) |
| 18 | 1 17 | biimtrid | |- ( A C_ On -> ( x e. U. A -> x e. On ) ) |
| 19 | 18 | ssrdv | |- ( A C_ On -> U. A C_ On ) |
| 20 | ordon | |- Ord On |
|
| 21 | trssord | |- ( ( Tr U. A /\ U. A C_ On /\ Ord On ) -> Ord U. A ) |
|
| 22 | 21 | 3exp | |- ( Tr U. A -> ( U. A C_ On -> ( Ord On -> Ord U. A ) ) ) |
| 23 | 20 22 | mpii | |- ( Tr U. A -> ( U. A C_ On -> Ord U. A ) ) |
| 24 | 13 19 23 | sylc | |- ( A C_ On -> Ord U. A ) |