This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of saying a class of ordinals is unbounded. (Contributed by Mario Carneiro, 8-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssonprc | |- ( A C_ On -> ( A e/ _V <-> U. A = On ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | |- ( A e/ _V <-> -. A e. _V ) |
|
| 2 | ssorduni | |- ( A C_ On -> Ord U. A ) |
|
| 3 | ordeleqon | |- ( Ord U. A <-> ( U. A e. On \/ U. A = On ) ) |
|
| 4 | 2 3 | sylib | |- ( A C_ On -> ( U. A e. On \/ U. A = On ) ) |
| 5 | 4 | orcomd | |- ( A C_ On -> ( U. A = On \/ U. A e. On ) ) |
| 6 | 5 | ord | |- ( A C_ On -> ( -. U. A = On -> U. A e. On ) ) |
| 7 | uniexr | |- ( U. A e. On -> A e. _V ) |
|
| 8 | 6 7 | syl6 | |- ( A C_ On -> ( -. U. A = On -> A e. _V ) ) |
| 9 | 8 | con1d | |- ( A C_ On -> ( -. A e. _V -> U. A = On ) ) |
| 10 | onprc | |- -. On e. _V |
|
| 11 | uniexg | |- ( A e. _V -> U. A e. _V ) |
|
| 12 | eleq1 | |- ( U. A = On -> ( U. A e. _V <-> On e. _V ) ) |
|
| 13 | 11 12 | imbitrid | |- ( U. A = On -> ( A e. _V -> On e. _V ) ) |
| 14 | 10 13 | mtoi | |- ( U. A = On -> -. A e. _V ) |
| 15 | 9 14 | impbid1 | |- ( A C_ On -> ( -. A e. _V <-> U. A = On ) ) |
| 16 | 1 15 | bitrid | |- ( A C_ On -> ( A e/ _V <-> U. A = On ) ) |