This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent to the Tarski-Grothendieck Axiom: there is a proper class of inaccessible cardinals. (Contributed by Mario Carneiro, 9-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inaprc | ⊢ Inacc ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inawina | ⊢ ( 𝑥 ∈ Inacc → 𝑥 ∈ Inaccw ) | |
| 2 | winaon | ⊢ ( 𝑥 ∈ Inaccw → 𝑥 ∈ On ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑥 ∈ Inacc → 𝑥 ∈ On ) |
| 4 | 3 | ssriv | ⊢ Inacc ⊆ On |
| 5 | ssorduni | ⊢ ( Inacc ⊆ On → Ord ∪ Inacc ) | |
| 6 | ordsson | ⊢ ( Ord ∪ Inacc → ∪ Inacc ⊆ On ) | |
| 7 | 4 5 6 | mp2b | ⊢ ∪ Inacc ⊆ On |
| 8 | vex | ⊢ 𝑦 ∈ V | |
| 9 | grothtsk | ⊢ ∪ Tarski = V | |
| 10 | 8 9 | eleqtrri | ⊢ 𝑦 ∈ ∪ Tarski |
| 11 | eluni2 | ⊢ ( 𝑦 ∈ ∪ Tarski ↔ ∃ 𝑤 ∈ Tarski 𝑦 ∈ 𝑤 ) | |
| 12 | 10 11 | mpbi | ⊢ ∃ 𝑤 ∈ Tarski 𝑦 ∈ 𝑤 |
| 13 | ne0i | ⊢ ( 𝑦 ∈ 𝑤 → 𝑤 ≠ ∅ ) | |
| 14 | tskcard | ⊢ ( ( 𝑤 ∈ Tarski ∧ 𝑤 ≠ ∅ ) → ( card ‘ 𝑤 ) ∈ Inacc ) | |
| 15 | 13 14 | sylan2 | ⊢ ( ( 𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤 ) → ( card ‘ 𝑤 ) ∈ Inacc ) |
| 16 | tsksdom | ⊢ ( ( 𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤 ) → 𝑦 ≺ 𝑤 ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝑦 ∈ On ∧ ( 𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤 ) ) → 𝑦 ≺ 𝑤 ) |
| 18 | tskwe2 | ⊢ ( 𝑤 ∈ Tarski → 𝑤 ∈ dom card ) | |
| 19 | 18 | adantr | ⊢ ( ( 𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤 ) → 𝑤 ∈ dom card ) |
| 20 | cardsdomel | ⊢ ( ( 𝑦 ∈ On ∧ 𝑤 ∈ dom card ) → ( 𝑦 ≺ 𝑤 ↔ 𝑦 ∈ ( card ‘ 𝑤 ) ) ) | |
| 21 | 19 20 | sylan2 | ⊢ ( ( 𝑦 ∈ On ∧ ( 𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤 ) ) → ( 𝑦 ≺ 𝑤 ↔ 𝑦 ∈ ( card ‘ 𝑤 ) ) ) |
| 22 | 17 21 | mpbid | ⊢ ( ( 𝑦 ∈ On ∧ ( 𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤 ) ) → 𝑦 ∈ ( card ‘ 𝑤 ) ) |
| 23 | eleq2 | ⊢ ( 𝑧 = ( card ‘ 𝑤 ) → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ ( card ‘ 𝑤 ) ) ) | |
| 24 | 23 | rspcev | ⊢ ( ( ( card ‘ 𝑤 ) ∈ Inacc ∧ 𝑦 ∈ ( card ‘ 𝑤 ) ) → ∃ 𝑧 ∈ Inacc 𝑦 ∈ 𝑧 ) |
| 25 | 15 22 24 | syl2an2 | ⊢ ( ( 𝑦 ∈ On ∧ ( 𝑤 ∈ Tarski ∧ 𝑦 ∈ 𝑤 ) ) → ∃ 𝑧 ∈ Inacc 𝑦 ∈ 𝑧 ) |
| 26 | 25 | rexlimdvaa | ⊢ ( 𝑦 ∈ On → ( ∃ 𝑤 ∈ Tarski 𝑦 ∈ 𝑤 → ∃ 𝑧 ∈ Inacc 𝑦 ∈ 𝑧 ) ) |
| 27 | 12 26 | mpi | ⊢ ( 𝑦 ∈ On → ∃ 𝑧 ∈ Inacc 𝑦 ∈ 𝑧 ) |
| 28 | eluni2 | ⊢ ( 𝑦 ∈ ∪ Inacc ↔ ∃ 𝑧 ∈ Inacc 𝑦 ∈ 𝑧 ) | |
| 29 | 27 28 | sylibr | ⊢ ( 𝑦 ∈ On → 𝑦 ∈ ∪ Inacc ) |
| 30 | 29 | ssriv | ⊢ On ⊆ ∪ Inacc |
| 31 | 7 30 | eqssi | ⊢ ∪ Inacc = On |
| 32 | ssonprc | ⊢ ( Inacc ⊆ On → ( Inacc ∉ V ↔ ∪ Inacc = On ) ) | |
| 33 | 4 32 | ax-mp | ⊢ ( Inacc ∉ V ↔ ∪ Inacc = On ) |
| 34 | 31 33 | mpbir | ⊢ Inacc ∉ V |