This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Direct image by a Cartesian product. (Contributed by Thierry Arnoux, 4-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpima | |- ( ( A X. B ) " C ) = if ( ( A i^i C ) = (/) , (/) , B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmid | |- ( ( A i^i C ) = (/) \/ -. ( A i^i C ) = (/) ) |
|
| 2 | df-ima | |- ( ( A X. B ) " C ) = ran ( ( A X. B ) |` C ) |
|
| 3 | df-res | |- ( ( A X. B ) |` C ) = ( ( A X. B ) i^i ( C X. _V ) ) |
|
| 4 | 3 | rneqi | |- ran ( ( A X. B ) |` C ) = ran ( ( A X. B ) i^i ( C X. _V ) ) |
| 5 | 2 4 | eqtri | |- ( ( A X. B ) " C ) = ran ( ( A X. B ) i^i ( C X. _V ) ) |
| 6 | inxp | |- ( ( A X. B ) i^i ( C X. _V ) ) = ( ( A i^i C ) X. ( B i^i _V ) ) |
|
| 7 | 6 | rneqi | |- ran ( ( A X. B ) i^i ( C X. _V ) ) = ran ( ( A i^i C ) X. ( B i^i _V ) ) |
| 8 | inv1 | |- ( B i^i _V ) = B |
|
| 9 | 8 | xpeq2i | |- ( ( A i^i C ) X. ( B i^i _V ) ) = ( ( A i^i C ) X. B ) |
| 10 | 9 | rneqi | |- ran ( ( A i^i C ) X. ( B i^i _V ) ) = ran ( ( A i^i C ) X. B ) |
| 11 | 5 7 10 | 3eqtri | |- ( ( A X. B ) " C ) = ran ( ( A i^i C ) X. B ) |
| 12 | xpeq1 | |- ( ( A i^i C ) = (/) -> ( ( A i^i C ) X. B ) = ( (/) X. B ) ) |
|
| 13 | 0xp | |- ( (/) X. B ) = (/) |
|
| 14 | 12 13 | eqtrdi | |- ( ( A i^i C ) = (/) -> ( ( A i^i C ) X. B ) = (/) ) |
| 15 | 14 | rneqd | |- ( ( A i^i C ) = (/) -> ran ( ( A i^i C ) X. B ) = ran (/) ) |
| 16 | rn0 | |- ran (/) = (/) |
|
| 17 | 15 16 | eqtrdi | |- ( ( A i^i C ) = (/) -> ran ( ( A i^i C ) X. B ) = (/) ) |
| 18 | 11 17 | eqtrid | |- ( ( A i^i C ) = (/) -> ( ( A X. B ) " C ) = (/) ) |
| 19 | 18 | ancli | |- ( ( A i^i C ) = (/) -> ( ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = (/) ) ) |
| 20 | df-ne | |- ( ( A i^i C ) =/= (/) <-> -. ( A i^i C ) = (/) ) |
|
| 21 | rnxp | |- ( ( A i^i C ) =/= (/) -> ran ( ( A i^i C ) X. B ) = B ) |
|
| 22 | 20 21 | sylbir | |- ( -. ( A i^i C ) = (/) -> ran ( ( A i^i C ) X. B ) = B ) |
| 23 | 11 22 | eqtrid | |- ( -. ( A i^i C ) = (/) -> ( ( A X. B ) " C ) = B ) |
| 24 | 23 | ancli | |- ( -. ( A i^i C ) = (/) -> ( -. ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = B ) ) |
| 25 | 19 24 | orim12i | |- ( ( ( A i^i C ) = (/) \/ -. ( A i^i C ) = (/) ) -> ( ( ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = (/) ) \/ ( -. ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = B ) ) ) |
| 26 | 1 25 | ax-mp | |- ( ( ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = (/) ) \/ ( -. ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = B ) ) |
| 27 | eqif | |- ( ( ( A X. B ) " C ) = if ( ( A i^i C ) = (/) , (/) , B ) <-> ( ( ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = (/) ) \/ ( -. ( A i^i C ) = (/) /\ ( ( A X. B ) " C ) = B ) ) ) |
|
| 28 | 26 27 | mpbir | |- ( ( A X. B ) " C ) = if ( ( A i^i C ) = (/) , (/) , B ) |