This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation form of the Image functor. (Contributed by Scott Fenton, 4-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brimage.1 | |- A e. _V |
|
| brimage.2 | |- B e. _V |
||
| Assertion | brimage | |- ( A Image R B <-> B = ( R " A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brimage.1 | |- A e. _V |
|
| 2 | brimage.2 | |- B e. _V |
|
| 3 | df-image | |- Image R = ( ( _V X. _V ) \ ran ( ( _V (x) _E ) /_\ ( ( _E o. `' R ) (x) _V ) ) ) |
|
| 4 | brxp | |- ( A ( _V X. _V ) B <-> ( A e. _V /\ B e. _V ) ) |
|
| 5 | 1 2 4 | mpbir2an | |- A ( _V X. _V ) B |
| 6 | vex | |- x e. _V |
|
| 7 | vex | |- y e. _V |
|
| 8 | 6 7 | brcnv | |- ( x `' R y <-> y R x ) |
| 9 | 8 | rexbii | |- ( E. y e. A x `' R y <-> E. y e. A y R x ) |
| 10 | 6 1 | coep | |- ( x ( _E o. `' R ) A <-> E. y e. A x `' R y ) |
| 11 | 6 | elima | |- ( x e. ( R " A ) <-> E. y e. A y R x ) |
| 12 | 9 10 11 | 3bitr4ri | |- ( x e. ( R " A ) <-> x ( _E o. `' R ) A ) |
| 13 | 1 2 3 5 12 | brtxpsd3 | |- ( A Image R B <-> B = ( R " A ) ) |