This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Map the second half of II into II . (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iihalf2 | |- ( X e. ( ( 1 / 2 ) [,] 1 ) -> ( ( 2 x. X ) - 1 ) e. ( 0 [,] 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re | |- 2 e. RR |
|
| 2 | remulcl | |- ( ( 2 e. RR /\ X e. RR ) -> ( 2 x. X ) e. RR ) |
|
| 3 | 1 2 | mpan | |- ( X e. RR -> ( 2 x. X ) e. RR ) |
| 4 | 1re | |- 1 e. RR |
|
| 5 | resubcl | |- ( ( ( 2 x. X ) e. RR /\ 1 e. RR ) -> ( ( 2 x. X ) - 1 ) e. RR ) |
|
| 6 | 3 4 5 | sylancl | |- ( X e. RR -> ( ( 2 x. X ) - 1 ) e. RR ) |
| 7 | 6 | 3ad2ant1 | |- ( ( X e. RR /\ ( 1 / 2 ) <_ X /\ X <_ 1 ) -> ( ( 2 x. X ) - 1 ) e. RR ) |
| 8 | subge0 | |- ( ( ( 2 x. X ) e. RR /\ 1 e. RR ) -> ( 0 <_ ( ( 2 x. X ) - 1 ) <-> 1 <_ ( 2 x. X ) ) ) |
|
| 9 | 3 4 8 | sylancl | |- ( X e. RR -> ( 0 <_ ( ( 2 x. X ) - 1 ) <-> 1 <_ ( 2 x. X ) ) ) |
| 10 | 2pos | |- 0 < 2 |
|
| 11 | 1 10 | pm3.2i | |- ( 2 e. RR /\ 0 < 2 ) |
| 12 | ledivmul | |- ( ( 1 e. RR /\ X e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( 1 / 2 ) <_ X <-> 1 <_ ( 2 x. X ) ) ) |
|
| 13 | 4 11 12 | mp3an13 | |- ( X e. RR -> ( ( 1 / 2 ) <_ X <-> 1 <_ ( 2 x. X ) ) ) |
| 14 | 9 13 | bitr4d | |- ( X e. RR -> ( 0 <_ ( ( 2 x. X ) - 1 ) <-> ( 1 / 2 ) <_ X ) ) |
| 15 | 14 | biimpar | |- ( ( X e. RR /\ ( 1 / 2 ) <_ X ) -> 0 <_ ( ( 2 x. X ) - 1 ) ) |
| 16 | 15 | 3adant3 | |- ( ( X e. RR /\ ( 1 / 2 ) <_ X /\ X <_ 1 ) -> 0 <_ ( ( 2 x. X ) - 1 ) ) |
| 17 | ax-1cn | |- 1 e. CC |
|
| 18 | 17 | 2timesi | |- ( 2 x. 1 ) = ( 1 + 1 ) |
| 19 | 18 | a1i | |- ( X e. RR -> ( 2 x. 1 ) = ( 1 + 1 ) ) |
| 20 | 19 | breq2d | |- ( X e. RR -> ( ( 2 x. X ) <_ ( 2 x. 1 ) <-> ( 2 x. X ) <_ ( 1 + 1 ) ) ) |
| 21 | lemul2 | |- ( ( X e. RR /\ 1 e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( X <_ 1 <-> ( 2 x. X ) <_ ( 2 x. 1 ) ) ) |
|
| 22 | 4 11 21 | mp3an23 | |- ( X e. RR -> ( X <_ 1 <-> ( 2 x. X ) <_ ( 2 x. 1 ) ) ) |
| 23 | lesubadd | |- ( ( ( 2 x. X ) e. RR /\ 1 e. RR /\ 1 e. RR ) -> ( ( ( 2 x. X ) - 1 ) <_ 1 <-> ( 2 x. X ) <_ ( 1 + 1 ) ) ) |
|
| 24 | 4 4 23 | mp3an23 | |- ( ( 2 x. X ) e. RR -> ( ( ( 2 x. X ) - 1 ) <_ 1 <-> ( 2 x. X ) <_ ( 1 + 1 ) ) ) |
| 25 | 3 24 | syl | |- ( X e. RR -> ( ( ( 2 x. X ) - 1 ) <_ 1 <-> ( 2 x. X ) <_ ( 1 + 1 ) ) ) |
| 26 | 20 22 25 | 3bitr4d | |- ( X e. RR -> ( X <_ 1 <-> ( ( 2 x. X ) - 1 ) <_ 1 ) ) |
| 27 | 26 | biimpa | |- ( ( X e. RR /\ X <_ 1 ) -> ( ( 2 x. X ) - 1 ) <_ 1 ) |
| 28 | 27 | 3adant2 | |- ( ( X e. RR /\ ( 1 / 2 ) <_ X /\ X <_ 1 ) -> ( ( 2 x. X ) - 1 ) <_ 1 ) |
| 29 | 7 16 28 | 3jca | |- ( ( X e. RR /\ ( 1 / 2 ) <_ X /\ X <_ 1 ) -> ( ( ( 2 x. X ) - 1 ) e. RR /\ 0 <_ ( ( 2 x. X ) - 1 ) /\ ( ( 2 x. X ) - 1 ) <_ 1 ) ) |
| 30 | halfre | |- ( 1 / 2 ) e. RR |
|
| 31 | 30 4 | elicc2i | |- ( X e. ( ( 1 / 2 ) [,] 1 ) <-> ( X e. RR /\ ( 1 / 2 ) <_ X /\ X <_ 1 ) ) |
| 32 | elicc01 | |- ( ( ( 2 x. X ) - 1 ) e. ( 0 [,] 1 ) <-> ( ( ( 2 x. X ) - 1 ) e. RR /\ 0 <_ ( ( 2 x. X ) - 1 ) /\ ( ( 2 x. X ) - 1 ) <_ 1 ) ) |
|
| 33 | 29 31 32 | 3imtr4i | |- ( X e. ( ( 1 / 2 ) [,] 1 ) -> ( ( 2 x. X ) - 1 ) e. ( 0 [,] 1 ) ) |