This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open interval has empty intersection with its bounds. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iooinlbub | |- ( ( A (,) B ) i^i { A , B } ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjr | |- ( ( ( A (,) B ) i^i { A , B } ) = (/) <-> A. x e. { A , B } -. x e. ( A (,) B ) ) |
|
| 2 | elpri | |- ( x e. { A , B } -> ( x = A \/ x = B ) ) |
|
| 3 | lbioo | |- -. A e. ( A (,) B ) |
|
| 4 | eleq1 | |- ( x = A -> ( x e. ( A (,) B ) <-> A e. ( A (,) B ) ) ) |
|
| 5 | 3 4 | mtbiri | |- ( x = A -> -. x e. ( A (,) B ) ) |
| 6 | ubioo | |- -. B e. ( A (,) B ) |
|
| 7 | eleq1 | |- ( x = B -> ( x e. ( A (,) B ) <-> B e. ( A (,) B ) ) ) |
|
| 8 | 6 7 | mtbiri | |- ( x = B -> -. x e. ( A (,) B ) ) |
| 9 | 5 8 | jaoi | |- ( ( x = A \/ x = B ) -> -. x e. ( A (,) B ) ) |
| 10 | 2 9 | syl | |- ( x e. { A , B } -> -. x e. ( A (,) B ) ) |
| 11 | 1 10 | mprgbir | |- ( ( A (,) B ) i^i { A , B } ) = (/) |