This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero sequence in Hilbert space converges to the zero vector. (Contributed by NM, 17-Aug-1999) (Proof shortened by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlim0 | |- ( NN X. { 0h } ) ~~>v 0h |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | |- 0h e. ~H |
|
| 2 | 1 | fconst6 | |- ( NN X. { 0h } ) : NN --> ~H |
| 3 | ax-hilex | |- ~H e. _V |
|
| 4 | nnex | |- NN e. _V |
|
| 5 | 3 4 | elmap | |- ( ( NN X. { 0h } ) e. ( ~H ^m NN ) <-> ( NN X. { 0h } ) : NN --> ~H ) |
| 6 | 2 5 | mpbir | |- ( NN X. { 0h } ) e. ( ~H ^m NN ) |
| 7 | eqid | |- <. <. +h , .h >. , normh >. = <. <. +h , .h >. , normh >. |
|
| 8 | eqid | |- ( IndMet ` <. <. +h , .h >. , normh >. ) = ( IndMet ` <. <. +h , .h >. , normh >. ) |
|
| 9 | 7 8 | hhxmet | |- ( IndMet ` <. <. +h , .h >. , normh >. ) e. ( *Met ` ~H ) |
| 10 | eqid | |- ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) = ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) |
|
| 11 | 10 | mopntopon | |- ( ( IndMet ` <. <. +h , .h >. , normh >. ) e. ( *Met ` ~H ) -> ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) e. ( TopOn ` ~H ) ) |
| 12 | 9 11 | ax-mp | |- ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) e. ( TopOn ` ~H ) |
| 13 | 1z | |- 1 e. ZZ |
|
| 14 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 15 | 14 | lmconst | |- ( ( ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) e. ( TopOn ` ~H ) /\ 0h e. ~H /\ 1 e. ZZ ) -> ( NN X. { 0h } ) ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) 0h ) |
| 16 | 12 1 13 15 | mp3an | |- ( NN X. { 0h } ) ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) 0h |
| 17 | 7 8 10 | hhlm | |- ~~>v = ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) |
| 18 | 17 | breqi | |- ( ( NN X. { 0h } ) ~~>v 0h <-> ( NN X. { 0h } ) ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) 0h ) |
| 19 | 1 | elexi | |- 0h e. _V |
| 20 | 19 | brresi | |- ( ( NN X. { 0h } ) ( ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) |` ( ~H ^m NN ) ) 0h <-> ( ( NN X. { 0h } ) e. ( ~H ^m NN ) /\ ( NN X. { 0h } ) ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) 0h ) ) |
| 21 | 18 20 | bitri | |- ( ( NN X. { 0h } ) ~~>v 0h <-> ( ( NN X. { 0h } ) e. ( ~H ^m NN ) /\ ( NN X. { 0h } ) ( ~~>t ` ( MetOpen ` ( IndMet ` <. <. +h , .h >. , normh >. ) ) ) 0h ) ) |
| 22 | 6 16 21 | mpbir2an | |- ( NN X. { 0h } ) ~~>v 0h |