This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Hilbert space zero operator. See df0op2 for alternate definition. (Contributed by NM, 7-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-h0op | |- 0hop = ( projh ` 0H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ch0o | |- 0hop |
|
| 1 | cpjh | |- projh |
|
| 2 | c0h | |- 0H |
|
| 3 | 2 1 | cfv | |- ( projh ` 0H ) |
| 4 | 0 3 | wceq | |- 0hop = ( projh ` 0H ) |