This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of the unit subspace is the zero subspace. Does not require Axiom of Choice. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | choc1 | |- ( _|_ ` ~H ) = 0H |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | helsh | |- ~H e. SH |
|
| 2 | shocel | |- ( ~H e. SH -> ( x e. ( _|_ ` ~H ) <-> ( x e. ~H /\ A. y e. ~H ( x .ih y ) = 0 ) ) ) |
|
| 3 | 1 2 | ax-mp | |- ( x e. ( _|_ ` ~H ) <-> ( x e. ~H /\ A. y e. ~H ( x .ih y ) = 0 ) ) |
| 4 | 3 | simprbi | |- ( x e. ( _|_ ` ~H ) -> A. y e. ~H ( x .ih y ) = 0 ) |
| 5 | shocss | |- ( ~H e. SH -> ( _|_ ` ~H ) C_ ~H ) |
|
| 6 | 1 5 | ax-mp | |- ( _|_ ` ~H ) C_ ~H |
| 7 | 6 | sseli | |- ( x e. ( _|_ ` ~H ) -> x e. ~H ) |
| 8 | hial0 | |- ( x e. ~H -> ( A. y e. ~H ( x .ih y ) = 0 <-> x = 0h ) ) |
|
| 9 | 7 8 | syl | |- ( x e. ( _|_ ` ~H ) -> ( A. y e. ~H ( x .ih y ) = 0 <-> x = 0h ) ) |
| 10 | 4 9 | mpbid | |- ( x e. ( _|_ ` ~H ) -> x = 0h ) |
| 11 | elch0 | |- ( x e. 0H <-> x = 0h ) |
|
| 12 | 10 11 | sylibr | |- ( x e. ( _|_ ` ~H ) -> x e. 0H ) |
| 13 | 12 | ssriv | |- ( _|_ ` ~H ) C_ 0H |
| 14 | h0elsh | |- 0H e. SH |
|
| 15 | shococss | |- ( 0H e. SH -> 0H C_ ( _|_ ` ( _|_ ` 0H ) ) ) |
|
| 16 | 14 15 | ax-mp | |- 0H C_ ( _|_ ` ( _|_ ` 0H ) ) |
| 17 | choc0 | |- ( _|_ ` 0H ) = ~H |
|
| 18 | 17 | fveq2i | |- ( _|_ ` ( _|_ ` 0H ) ) = ( _|_ ` ~H ) |
| 19 | 16 18 | sseqtri | |- 0H C_ ( _|_ ` ~H ) |
| 20 | 13 19 | eqssi | |- ( _|_ ` ~H ) = 0H |