This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An image of a function under a set is dominated by the set. Proposition 10.34 of TakeutiZaring p. 92. (Contributed by NM, 23-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | imadomg | |- ( A e. B -> ( Fun F -> ( F " A ) ~<_ A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ima | |- ( F " A ) = ran ( F |` A ) |
|
| 2 | resfunexg | |- ( ( Fun F /\ A e. B ) -> ( F |` A ) e. _V ) |
|
| 3 | 2 | dmexd | |- ( ( Fun F /\ A e. B ) -> dom ( F |` A ) e. _V ) |
| 4 | funres | |- ( Fun F -> Fun ( F |` A ) ) |
|
| 5 | funforn | |- ( Fun ( F |` A ) <-> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) |
|
| 6 | 4 5 | sylib | |- ( Fun F -> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) |
| 7 | 6 | adantr | |- ( ( Fun F /\ A e. B ) -> ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) ) |
| 8 | fodomg | |- ( dom ( F |` A ) e. _V -> ( ( F |` A ) : dom ( F |` A ) -onto-> ran ( F |` A ) -> ran ( F |` A ) ~<_ dom ( F |` A ) ) ) |
|
| 9 | 3 7 8 | sylc | |- ( ( Fun F /\ A e. B ) -> ran ( F |` A ) ~<_ dom ( F |` A ) ) |
| 10 | 1 9 | eqbrtrid | |- ( ( Fun F /\ A e. B ) -> ( F " A ) ~<_ dom ( F |` A ) ) |
| 11 | 10 | expcom | |- ( A e. B -> ( Fun F -> ( F " A ) ~<_ dom ( F |` A ) ) ) |
| 12 | dmres | |- dom ( F |` A ) = ( A i^i dom F ) |
|
| 13 | inss1 | |- ( A i^i dom F ) C_ A |
|
| 14 | 12 13 | eqsstri | |- dom ( F |` A ) C_ A |
| 15 | ssdomg | |- ( A e. B -> ( dom ( F |` A ) C_ A -> dom ( F |` A ) ~<_ A ) ) |
|
| 16 | 14 15 | mpi | |- ( A e. B -> dom ( F |` A ) ~<_ A ) |
| 17 | domtr | |- ( ( ( F " A ) ~<_ dom ( F |` A ) /\ dom ( F |` A ) ~<_ A ) -> ( F " A ) ~<_ A ) |
|
| 18 | 16 17 | sylan2 | |- ( ( ( F " A ) ~<_ dom ( F |` A ) /\ A e. B ) -> ( F " A ) ~<_ A ) |
| 19 | 18 | expcom | |- ( A e. B -> ( ( F " A ) ~<_ dom ( F |` A ) -> ( F " A ) ~<_ A ) ) |
| 20 | 11 19 | syld | |- ( A e. B -> ( Fun F -> ( F " A ) ~<_ A ) ) |