This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If X is a Hausdorff space, then the cardinality of the closure of a set A is bounded by the double powerset of A . In particular, a Hausdorff space with a dense subset A has cardinality at most ~P ~P A , and a separable Hausdorff space has cardinality at most ~P ~P NN . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Mario Carneiro, 28-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hauspwpwf1.x | |- X = U. J |
|
| Assertion | hauspwpwdom | |- ( ( J e. Haus /\ A C_ X ) -> ( ( cls ` J ) ` A ) ~<_ ~P ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hauspwpwf1.x | |- X = U. J |
|
| 2 | fvexd | |- ( ( J e. Haus /\ A C_ X ) -> ( ( cls ` J ) ` A ) e. _V ) |
|
| 3 | haustop | |- ( J e. Haus -> J e. Top ) |
|
| 4 | 1 | topopn | |- ( J e. Top -> X e. J ) |
| 5 | 3 4 | syl | |- ( J e. Haus -> X e. J ) |
| 6 | 5 | adantr | |- ( ( J e. Haus /\ A C_ X ) -> X e. J ) |
| 7 | simpr | |- ( ( J e. Haus /\ A C_ X ) -> A C_ X ) |
|
| 8 | 6 7 | ssexd | |- ( ( J e. Haus /\ A C_ X ) -> A e. _V ) |
| 9 | pwexg | |- ( A e. _V -> ~P A e. _V ) |
|
| 10 | pwexg | |- ( ~P A e. _V -> ~P ~P A e. _V ) |
|
| 11 | 8 9 10 | 3syl | |- ( ( J e. Haus /\ A C_ X ) -> ~P ~P A e. _V ) |
| 12 | eqid | |- ( x e. ( ( cls ` J ) ` A ) |-> { z | E. y e. J ( x e. y /\ z = ( y i^i A ) ) } ) = ( x e. ( ( cls ` J ) ` A ) |-> { z | E. y e. J ( x e. y /\ z = ( y i^i A ) ) } ) |
|
| 13 | 1 12 | hauspwpwf1 | |- ( ( J e. Haus /\ A C_ X ) -> ( x e. ( ( cls ` J ) ` A ) |-> { z | E. y e. J ( x e. y /\ z = ( y i^i A ) ) } ) : ( ( cls ` J ) ` A ) -1-1-> ~P ~P A ) |
| 14 | f1dom2g | |- ( ( ( ( cls ` J ) ` A ) e. _V /\ ~P ~P A e. _V /\ ( x e. ( ( cls ` J ) ` A ) |-> { z | E. y e. J ( x e. y /\ z = ( y i^i A ) ) } ) : ( ( cls ` J ) ` A ) -1-1-> ~P ~P A ) -> ( ( cls ` J ) ` A ) ~<_ ~P ~P A ) |
|
| 15 | 2 11 13 14 | syl3anc | |- ( ( J e. Haus /\ A C_ X ) -> ( ( cls ` J ) ` A ) ~<_ ~P ~P A ) |