This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elprchashprn2 | |- ( -. M e. _V -> -. ( # ` { M , N } ) = 2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prprc1 | |- ( -. M e. _V -> { M , N } = { N } ) |
|
| 2 | hashsng | |- ( N e. _V -> ( # ` { N } ) = 1 ) |
|
| 3 | fveq2 | |- ( { M , N } = { N } -> ( # ` { M , N } ) = ( # ` { N } ) ) |
|
| 4 | 3 | eqcomd | |- ( { M , N } = { N } -> ( # ` { N } ) = ( # ` { M , N } ) ) |
| 5 | 4 | eqeq1d | |- ( { M , N } = { N } -> ( ( # ` { N } ) = 1 <-> ( # ` { M , N } ) = 1 ) ) |
| 6 | 5 | biimpa | |- ( ( { M , N } = { N } /\ ( # ` { N } ) = 1 ) -> ( # ` { M , N } ) = 1 ) |
| 7 | id | |- ( ( # ` { M , N } ) = 1 -> ( # ` { M , N } ) = 1 ) |
|
| 8 | 1ne2 | |- 1 =/= 2 |
|
| 9 | 8 | a1i | |- ( ( # ` { M , N } ) = 1 -> 1 =/= 2 ) |
| 10 | 7 9 | eqnetrd | |- ( ( # ` { M , N } ) = 1 -> ( # ` { M , N } ) =/= 2 ) |
| 11 | 10 | neneqd | |- ( ( # ` { M , N } ) = 1 -> -. ( # ` { M , N } ) = 2 ) |
| 12 | 6 11 | syl | |- ( ( { M , N } = { N } /\ ( # ` { N } ) = 1 ) -> -. ( # ` { M , N } ) = 2 ) |
| 13 | 12 | expcom | |- ( ( # ` { N } ) = 1 -> ( { M , N } = { N } -> -. ( # ` { M , N } ) = 2 ) ) |
| 14 | 2 13 | syl | |- ( N e. _V -> ( { M , N } = { N } -> -. ( # ` { M , N } ) = 2 ) ) |
| 15 | snprc | |- ( -. N e. _V <-> { N } = (/) ) |
|
| 16 | eqeq2 | |- ( { N } = (/) -> ( { M , N } = { N } <-> { M , N } = (/) ) ) |
|
| 17 | 16 | biimpa | |- ( ( { N } = (/) /\ { M , N } = { N } ) -> { M , N } = (/) ) |
| 18 | hash0 | |- ( # ` (/) ) = 0 |
|
| 19 | fveq2 | |- ( { M , N } = (/) -> ( # ` { M , N } ) = ( # ` (/) ) ) |
|
| 20 | 19 | eqcomd | |- ( { M , N } = (/) -> ( # ` (/) ) = ( # ` { M , N } ) ) |
| 21 | 20 | eqeq1d | |- ( { M , N } = (/) -> ( ( # ` (/) ) = 0 <-> ( # ` { M , N } ) = 0 ) ) |
| 22 | 21 | biimpa | |- ( ( { M , N } = (/) /\ ( # ` (/) ) = 0 ) -> ( # ` { M , N } ) = 0 ) |
| 23 | id | |- ( ( # ` { M , N } ) = 0 -> ( # ` { M , N } ) = 0 ) |
|
| 24 | 0ne2 | |- 0 =/= 2 |
|
| 25 | 24 | a1i | |- ( ( # ` { M , N } ) = 0 -> 0 =/= 2 ) |
| 26 | 23 25 | eqnetrd | |- ( ( # ` { M , N } ) = 0 -> ( # ` { M , N } ) =/= 2 ) |
| 27 | 26 | neneqd | |- ( ( # ` { M , N } ) = 0 -> -. ( # ` { M , N } ) = 2 ) |
| 28 | 22 27 | syl | |- ( ( { M , N } = (/) /\ ( # ` (/) ) = 0 ) -> -. ( # ` { M , N } ) = 2 ) |
| 29 | 17 18 28 | sylancl | |- ( ( { N } = (/) /\ { M , N } = { N } ) -> -. ( # ` { M , N } ) = 2 ) |
| 30 | 29 | ex | |- ( { N } = (/) -> ( { M , N } = { N } -> -. ( # ` { M , N } ) = 2 ) ) |
| 31 | 15 30 | sylbi | |- ( -. N e. _V -> ( { M , N } = { N } -> -. ( # ` { M , N } ) = 2 ) ) |
| 32 | 14 31 | pm2.61i | |- ( { M , N } = { N } -> -. ( # ` { M , N } ) = 2 ) |
| 33 | 1 32 | syl | |- ( -. M e. _V -> -. ( # ` { M , N } ) = 2 ) |