This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the hash function for a set is either a nonnegative integer or positive infinity. TODO-AV: mark as OBSOLETE and replace it by hashxnn0 ? (Contributed by Alexander van der Vekens, 6-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashnn0pnf | |- ( M e. V -> ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashf | |- # : _V --> ( NN0 u. { +oo } ) |
|
| 2 | 1 | a1i | |- ( M e. V -> # : _V --> ( NN0 u. { +oo } ) ) |
| 3 | elex | |- ( M e. V -> M e. _V ) |
|
| 4 | 2 3 | ffvelcdmd | |- ( M e. V -> ( # ` M ) e. ( NN0 u. { +oo } ) ) |
| 5 | elun | |- ( ( # ` M ) e. ( NN0 u. { +oo } ) <-> ( ( # ` M ) e. NN0 \/ ( # ` M ) e. { +oo } ) ) |
|
| 6 | elsni | |- ( ( # ` M ) e. { +oo } -> ( # ` M ) = +oo ) |
|
| 7 | 6 | orim2i | |- ( ( ( # ` M ) e. NN0 \/ ( # ` M ) e. { +oo } ) -> ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) ) |
| 8 | 5 7 | sylbi | |- ( ( # ` M ) e. ( NN0 u. { +oo } ) -> ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) ) |
| 9 | 4 8 | syl | |- ( M e. V -> ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) ) |