This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero nonnegative number is positive. (Contributed by NM, 20-Nov-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ne0gt0 | |- ( ( A e. RR /\ 0 <_ A ) -> ( A =/= 0 <-> 0 < A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | lttri2 | |- ( ( A e. RR /\ 0 e. RR ) -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. RR -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
| 4 | 3 | adantr | |- ( ( A e. RR /\ 0 <_ A ) -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) ) |
| 5 | lenlt | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> -. A < 0 ) ) |
|
| 6 | 1 5 | mpan | |- ( A e. RR -> ( 0 <_ A <-> -. A < 0 ) ) |
| 7 | 6 | biimpa | |- ( ( A e. RR /\ 0 <_ A ) -> -. A < 0 ) |
| 8 | biorf | |- ( -. A < 0 -> ( 0 < A <-> ( A < 0 \/ 0 < A ) ) ) |
|
| 9 | 7 8 | syl | |- ( ( A e. RR /\ 0 <_ A ) -> ( 0 < A <-> ( A < 0 \/ 0 < A ) ) ) |
| 10 | 4 9 | bitr4d | |- ( ( A e. RR /\ 0 <_ A ) -> ( A =/= 0 <-> 0 < A ) ) |