This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a set with more than one element are two different elements. (Contributed by Alexander van der Vekens, 15-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashgt12el2 | |- ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> E. b e. V A =/= b ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash0 | |- ( # ` (/) ) = 0 |
|
| 2 | fveq2 | |- ( (/) = V -> ( # ` (/) ) = ( # ` V ) ) |
|
| 3 | 1 2 | eqtr3id | |- ( (/) = V -> 0 = ( # ` V ) ) |
| 4 | breq2 | |- ( ( # ` V ) = 0 -> ( 1 < ( # ` V ) <-> 1 < 0 ) ) |
|
| 5 | 4 | biimpd | |- ( ( # ` V ) = 0 -> ( 1 < ( # ` V ) -> 1 < 0 ) ) |
| 6 | 5 | eqcoms | |- ( 0 = ( # ` V ) -> ( 1 < ( # ` V ) -> 1 < 0 ) ) |
| 7 | 0le1 | |- 0 <_ 1 |
|
| 8 | 0re | |- 0 e. RR |
|
| 9 | 1re | |- 1 e. RR |
|
| 10 | 8 9 | lenlti | |- ( 0 <_ 1 <-> -. 1 < 0 ) |
| 11 | pm2.21 | |- ( -. 1 < 0 -> ( 1 < 0 -> E. b e. V A =/= b ) ) |
|
| 12 | 10 11 | sylbi | |- ( 0 <_ 1 -> ( 1 < 0 -> E. b e. V A =/= b ) ) |
| 13 | 7 12 | ax-mp | |- ( 1 < 0 -> E. b e. V A =/= b ) |
| 14 | 6 13 | syl6com | |- ( 1 < ( # ` V ) -> ( 0 = ( # ` V ) -> E. b e. V A =/= b ) ) |
| 15 | 14 | 3ad2ant2 | |- ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> ( 0 = ( # ` V ) -> E. b e. V A =/= b ) ) |
| 16 | 3 15 | syl5com | |- ( (/) = V -> ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> E. b e. V A =/= b ) ) |
| 17 | df-ne | |- ( (/) =/= V <-> -. (/) = V ) |
|
| 18 | necom | |- ( (/) =/= V <-> V =/= (/) ) |
|
| 19 | 17 18 | bitr3i | |- ( -. (/) = V <-> V =/= (/) ) |
| 20 | ralnex | |- ( A. b e. V -. A =/= b <-> -. E. b e. V A =/= b ) |
|
| 21 | nne | |- ( -. A =/= b <-> A = b ) |
|
| 22 | eqcom | |- ( A = b <-> b = A ) |
|
| 23 | 21 22 | bitri | |- ( -. A =/= b <-> b = A ) |
| 24 | 23 | ralbii | |- ( A. b e. V -. A =/= b <-> A. b e. V b = A ) |
| 25 | 20 24 | bitr3i | |- ( -. E. b e. V A =/= b <-> A. b e. V b = A ) |
| 26 | eqsn | |- ( V =/= (/) -> ( V = { A } <-> A. b e. V b = A ) ) |
|
| 27 | 26 | bicomd | |- ( V =/= (/) -> ( A. b e. V b = A <-> V = { A } ) ) |
| 28 | 27 | adantl | |- ( ( V e. W /\ V =/= (/) ) -> ( A. b e. V b = A <-> V = { A } ) ) |
| 29 | 28 | adantr | |- ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( A. b e. V b = A <-> V = { A } ) ) |
| 30 | hashsnle1 | |- ( # ` { A } ) <_ 1 |
|
| 31 | fveq2 | |- ( V = { A } -> ( # ` V ) = ( # ` { A } ) ) |
|
| 32 | 31 | breq1d | |- ( V = { A } -> ( ( # ` V ) <_ 1 <-> ( # ` { A } ) <_ 1 ) ) |
| 33 | 32 | adantl | |- ( ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) /\ V = { A } ) -> ( ( # ` V ) <_ 1 <-> ( # ` { A } ) <_ 1 ) ) |
| 34 | 30 33 | mpbiri | |- ( ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) /\ V = { A } ) -> ( # ` V ) <_ 1 ) |
| 35 | 34 | ex | |- ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( V = { A } -> ( # ` V ) <_ 1 ) ) |
| 36 | 29 35 | sylbid | |- ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( A. b e. V b = A -> ( # ` V ) <_ 1 ) ) |
| 37 | hashxrcl | |- ( V e. W -> ( # ` V ) e. RR* ) |
|
| 38 | 37 | adantr | |- ( ( V e. W /\ V =/= (/) ) -> ( # ` V ) e. RR* ) |
| 39 | 38 | adantr | |- ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( # ` V ) e. RR* ) |
| 40 | 1xr | |- 1 e. RR* |
|
| 41 | xrlenlt | |- ( ( ( # ` V ) e. RR* /\ 1 e. RR* ) -> ( ( # ` V ) <_ 1 <-> -. 1 < ( # ` V ) ) ) |
|
| 42 | 39 40 41 | sylancl | |- ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( ( # ` V ) <_ 1 <-> -. 1 < ( # ` V ) ) ) |
| 43 | 36 42 | sylibd | |- ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( A. b e. V b = A -> -. 1 < ( # ` V ) ) ) |
| 44 | 25 43 | biimtrid | |- ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( -. E. b e. V A =/= b -> -. 1 < ( # ` V ) ) ) |
| 45 | 44 | con4d | |- ( ( ( V e. W /\ V =/= (/) ) /\ A e. V ) -> ( 1 < ( # ` V ) -> E. b e. V A =/= b ) ) |
| 46 | 45 | exp31 | |- ( V e. W -> ( V =/= (/) -> ( A e. V -> ( 1 < ( # ` V ) -> E. b e. V A =/= b ) ) ) ) |
| 47 | 46 | com24 | |- ( V e. W -> ( 1 < ( # ` V ) -> ( A e. V -> ( V =/= (/) -> E. b e. V A =/= b ) ) ) ) |
| 48 | 47 | 3imp | |- ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> ( V =/= (/) -> E. b e. V A =/= b ) ) |
| 49 | 48 | com12 | |- ( V =/= (/) -> ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> E. b e. V A =/= b ) ) |
| 50 | 19 49 | sylbi | |- ( -. (/) = V -> ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> E. b e. V A =/= b ) ) |
| 51 | 16 50 | pm2.61i | |- ( ( V e. W /\ 1 < ( # ` V ) /\ A e. V ) -> E. b e. V A =/= b ) |