This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication of the vector space by a fixed scalar is an endomorphism of the additive group of vectors. (Contributed by Mario Carneiro, 5-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsghm.v | |- V = ( Base ` W ) |
|
| lmodvsghm.f | |- F = ( Scalar ` W ) |
||
| lmodvsghm.s | |- .x. = ( .s ` W ) |
||
| lmodvsghm.k | |- K = ( Base ` F ) |
||
| Assertion | lmodvsghm | |- ( ( W e. LMod /\ R e. K ) -> ( x e. V |-> ( R .x. x ) ) e. ( W GrpHom W ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsghm.v | |- V = ( Base ` W ) |
|
| 2 | lmodvsghm.f | |- F = ( Scalar ` W ) |
|
| 3 | lmodvsghm.s | |- .x. = ( .s ` W ) |
|
| 4 | lmodvsghm.k | |- K = ( Base ` F ) |
|
| 5 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 6 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 7 | 6 | adantr | |- ( ( W e. LMod /\ R e. K ) -> W e. Grp ) |
| 8 | 1 2 3 4 | lmodvscl | |- ( ( W e. LMod /\ R e. K /\ x e. V ) -> ( R .x. x ) e. V ) |
| 9 | 8 | 3expa | |- ( ( ( W e. LMod /\ R e. K ) /\ x e. V ) -> ( R .x. x ) e. V ) |
| 10 | 9 | fmpttd | |- ( ( W e. LMod /\ R e. K ) -> ( x e. V |-> ( R .x. x ) ) : V --> V ) |
| 11 | 1 5 2 3 4 | lmodvsdi | |- ( ( W e. LMod /\ ( R e. K /\ y e. V /\ z e. V ) ) -> ( R .x. ( y ( +g ` W ) z ) ) = ( ( R .x. y ) ( +g ` W ) ( R .x. z ) ) ) |
| 12 | 11 | 3exp2 | |- ( W e. LMod -> ( R e. K -> ( y e. V -> ( z e. V -> ( R .x. ( y ( +g ` W ) z ) ) = ( ( R .x. y ) ( +g ` W ) ( R .x. z ) ) ) ) ) ) |
| 13 | 12 | imp43 | |- ( ( ( W e. LMod /\ R e. K ) /\ ( y e. V /\ z e. V ) ) -> ( R .x. ( y ( +g ` W ) z ) ) = ( ( R .x. y ) ( +g ` W ) ( R .x. z ) ) ) |
| 14 | 1 5 | lmodvacl | |- ( ( W e. LMod /\ y e. V /\ z e. V ) -> ( y ( +g ` W ) z ) e. V ) |
| 15 | 14 | 3expb | |- ( ( W e. LMod /\ ( y e. V /\ z e. V ) ) -> ( y ( +g ` W ) z ) e. V ) |
| 16 | 15 | adantlr | |- ( ( ( W e. LMod /\ R e. K ) /\ ( y e. V /\ z e. V ) ) -> ( y ( +g ` W ) z ) e. V ) |
| 17 | oveq2 | |- ( x = ( y ( +g ` W ) z ) -> ( R .x. x ) = ( R .x. ( y ( +g ` W ) z ) ) ) |
|
| 18 | eqid | |- ( x e. V |-> ( R .x. x ) ) = ( x e. V |-> ( R .x. x ) ) |
|
| 19 | ovex | |- ( R .x. ( y ( +g ` W ) z ) ) e. _V |
|
| 20 | 17 18 19 | fvmpt | |- ( ( y ( +g ` W ) z ) e. V -> ( ( x e. V |-> ( R .x. x ) ) ` ( y ( +g ` W ) z ) ) = ( R .x. ( y ( +g ` W ) z ) ) ) |
| 21 | 16 20 | syl | |- ( ( ( W e. LMod /\ R e. K ) /\ ( y e. V /\ z e. V ) ) -> ( ( x e. V |-> ( R .x. x ) ) ` ( y ( +g ` W ) z ) ) = ( R .x. ( y ( +g ` W ) z ) ) ) |
| 22 | oveq2 | |- ( x = y -> ( R .x. x ) = ( R .x. y ) ) |
|
| 23 | ovex | |- ( R .x. y ) e. _V |
|
| 24 | 22 18 23 | fvmpt | |- ( y e. V -> ( ( x e. V |-> ( R .x. x ) ) ` y ) = ( R .x. y ) ) |
| 25 | oveq2 | |- ( x = z -> ( R .x. x ) = ( R .x. z ) ) |
|
| 26 | ovex | |- ( R .x. z ) e. _V |
|
| 27 | 25 18 26 | fvmpt | |- ( z e. V -> ( ( x e. V |-> ( R .x. x ) ) ` z ) = ( R .x. z ) ) |
| 28 | 24 27 | oveqan12d | |- ( ( y e. V /\ z e. V ) -> ( ( ( x e. V |-> ( R .x. x ) ) ` y ) ( +g ` W ) ( ( x e. V |-> ( R .x. x ) ) ` z ) ) = ( ( R .x. y ) ( +g ` W ) ( R .x. z ) ) ) |
| 29 | 28 | adantl | |- ( ( ( W e. LMod /\ R e. K ) /\ ( y e. V /\ z e. V ) ) -> ( ( ( x e. V |-> ( R .x. x ) ) ` y ) ( +g ` W ) ( ( x e. V |-> ( R .x. x ) ) ` z ) ) = ( ( R .x. y ) ( +g ` W ) ( R .x. z ) ) ) |
| 30 | 13 21 29 | 3eqtr4d | |- ( ( ( W e. LMod /\ R e. K ) /\ ( y e. V /\ z e. V ) ) -> ( ( x e. V |-> ( R .x. x ) ) ` ( y ( +g ` W ) z ) ) = ( ( ( x e. V |-> ( R .x. x ) ) ` y ) ( +g ` W ) ( ( x e. V |-> ( R .x. x ) ) ` z ) ) ) |
| 31 | 1 1 5 5 7 7 10 30 | isghmd | |- ( ( W e. LMod /\ R e. K ) -> ( x e. V |-> ( R .x. x ) ) e. ( W GrpHom W ) ) |