This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite group sum. This theorem has a weaker hypothesis than gsumcl , because it is not required that F is a function (actually, the hypothesis always holds for any proper class F ). (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumcl.b | |- B = ( Base ` G ) |
|
| gsumcl.z | |- .0. = ( 0g ` G ) |
||
| gsumcl.g | |- ( ph -> G e. CMnd ) |
||
| gsumcl.a | |- ( ph -> A e. V ) |
||
| gsumcl.f | |- ( ph -> F : A --> B ) |
||
| gsumcl2.w | |- ( ph -> ( F supp .0. ) e. Fin ) |
||
| Assertion | gsumcl2 | |- ( ph -> ( G gsum F ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcl.b | |- B = ( Base ` G ) |
|
| 2 | gsumcl.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsumcl.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsumcl.a | |- ( ph -> A e. V ) |
|
| 5 | gsumcl.f | |- ( ph -> F : A --> B ) |
|
| 6 | gsumcl2.w | |- ( ph -> ( F supp .0. ) e. Fin ) |
|
| 7 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 8 | cmnmnd | |- ( G e. CMnd -> G e. Mnd ) |
|
| 9 | 3 8 | syl | |- ( ph -> G e. Mnd ) |
| 10 | 1 7 3 5 | cntzcmnf | |- ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) |
| 11 | 1 2 7 9 4 5 10 6 | gsumzcl2 | |- ( ph -> ( G gsum F ) e. B ) |