This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A permutation of a set fixing an element of the set. (Contributed by AV, 4-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
||
| Assertion | symgfixelq | |- ( F e. V -> ( F e. Q <-> ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgfixf.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | symgfixf.q | |- Q = { q e. P | ( q ` K ) = K } |
|
| 3 | fveq1 | |- ( f = F -> ( f ` K ) = ( F ` K ) ) |
|
| 4 | 3 | eqeq1d | |- ( f = F -> ( ( f ` K ) = K <-> ( F ` K ) = K ) ) |
| 5 | fveq1 | |- ( q = f -> ( q ` K ) = ( f ` K ) ) |
|
| 6 | 5 | eqeq1d | |- ( q = f -> ( ( q ` K ) = K <-> ( f ` K ) = K ) ) |
| 7 | 6 | cbvrabv | |- { q e. P | ( q ` K ) = K } = { f e. P | ( f ` K ) = K } |
| 8 | 2 7 | eqtri | |- Q = { f e. P | ( f ` K ) = K } |
| 9 | 4 8 | elrab2 | |- ( F e. Q <-> ( F e. P /\ ( F ` K ) = K ) ) |
| 10 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 11 | 10 1 | elsymgbas2 | |- ( F e. V -> ( F e. P <-> F : N -1-1-onto-> N ) ) |
| 12 | 11 | anbi1d | |- ( F e. V -> ( ( F e. P /\ ( F ` K ) = K ) <-> ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) ) |
| 13 | 9 12 | bitrid | |- ( F e. V -> ( F e. Q <-> ( F : N -1-1-onto-> N /\ ( F ` K ) = K ) ) ) |