This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The (smallest) structure representing atrivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group ) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks ofthe trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | grp1.m | |- M = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } |
|
| Assertion | grp1 | |- ( I e. V -> M e. Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grp1.m | |- M = { <. ( Base ` ndx ) , { I } >. , <. ( +g ` ndx ) , { <. <. I , I >. , I >. } >. } |
|
| 2 | 1 | mnd1 | |- ( I e. V -> M e. Mnd ) |
| 3 | df-ov | |- ( I { <. <. I , I >. , I >. } I ) = ( { <. <. I , I >. , I >. } ` <. I , I >. ) |
|
| 4 | opex | |- <. I , I >. e. _V |
|
| 5 | fvsng | |- ( ( <. I , I >. e. _V /\ I e. V ) -> ( { <. <. I , I >. , I >. } ` <. I , I >. ) = I ) |
|
| 6 | 4 5 | mpan | |- ( I e. V -> ( { <. <. I , I >. , I >. } ` <. I , I >. ) = I ) |
| 7 | 3 6 | eqtrid | |- ( I e. V -> ( I { <. <. I , I >. , I >. } I ) = I ) |
| 8 | 1 | mnd1id | |- ( I e. V -> ( 0g ` M ) = I ) |
| 9 | 7 8 | eqtr4d | |- ( I e. V -> ( I { <. <. I , I >. , I >. } I ) = ( 0g ` M ) ) |
| 10 | oveq2 | |- ( i = I -> ( e { <. <. I , I >. , I >. } i ) = ( e { <. <. I , I >. , I >. } I ) ) |
|
| 11 | 10 | eqeq1d | |- ( i = I -> ( ( e { <. <. I , I >. , I >. } i ) = ( 0g ` M ) <-> ( e { <. <. I , I >. , I >. } I ) = ( 0g ` M ) ) ) |
| 12 | 11 | rexbidv | |- ( i = I -> ( E. e e. { I } ( e { <. <. I , I >. , I >. } i ) = ( 0g ` M ) <-> E. e e. { I } ( e { <. <. I , I >. , I >. } I ) = ( 0g ` M ) ) ) |
| 13 | 12 | ralsng | |- ( I e. V -> ( A. i e. { I } E. e e. { I } ( e { <. <. I , I >. , I >. } i ) = ( 0g ` M ) <-> E. e e. { I } ( e { <. <. I , I >. , I >. } I ) = ( 0g ` M ) ) ) |
| 14 | oveq1 | |- ( e = I -> ( e { <. <. I , I >. , I >. } I ) = ( I { <. <. I , I >. , I >. } I ) ) |
|
| 15 | 14 | eqeq1d | |- ( e = I -> ( ( e { <. <. I , I >. , I >. } I ) = ( 0g ` M ) <-> ( I { <. <. I , I >. , I >. } I ) = ( 0g ` M ) ) ) |
| 16 | 15 | rexsng | |- ( I e. V -> ( E. e e. { I } ( e { <. <. I , I >. , I >. } I ) = ( 0g ` M ) <-> ( I { <. <. I , I >. , I >. } I ) = ( 0g ` M ) ) ) |
| 17 | 13 16 | bitrd | |- ( I e. V -> ( A. i e. { I } E. e e. { I } ( e { <. <. I , I >. , I >. } i ) = ( 0g ` M ) <-> ( I { <. <. I , I >. , I >. } I ) = ( 0g ` M ) ) ) |
| 18 | 9 17 | mpbird | |- ( I e. V -> A. i e. { I } E. e e. { I } ( e { <. <. I , I >. , I >. } i ) = ( 0g ` M ) ) |
| 19 | snex | |- { I } e. _V |
|
| 20 | 1 | grpbase | |- ( { I } e. _V -> { I } = ( Base ` M ) ) |
| 21 | 19 20 | ax-mp | |- { I } = ( Base ` M ) |
| 22 | snex | |- { <. <. I , I >. , I >. } e. _V |
|
| 23 | 1 | grpplusg | |- ( { <. <. I , I >. , I >. } e. _V -> { <. <. I , I >. , I >. } = ( +g ` M ) ) |
| 24 | 22 23 | ax-mp | |- { <. <. I , I >. , I >. } = ( +g ` M ) |
| 25 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 26 | 21 24 25 | isgrp | |- ( M e. Grp <-> ( M e. Mnd /\ A. i e. { I } E. e e. { I } ( e { <. <. I , I >. , I >. } i ) = ( 0g ` M ) ) ) |
| 27 | 2 18 26 | sylanbrc | |- ( I e. V -> M e. Grp ) |