This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-gsum . The related theorems are provided later, see grpidval . (Contributed by NM, 20-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-0g | |- 0g = ( g e. _V |-> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | c0g | |- 0g |
|
| 1 | vg | |- g |
|
| 2 | cvv | |- _V |
|
| 3 | ve | |- e |
|
| 4 | 3 | cv | |- e |
| 5 | cbs | |- Base |
|
| 6 | 1 | cv | |- g |
| 7 | 6 5 | cfv | |- ( Base ` g ) |
| 8 | 4 7 | wcel | |- e e. ( Base ` g ) |
| 9 | vx | |- x |
|
| 10 | cplusg | |- +g |
|
| 11 | 6 10 | cfv | |- ( +g ` g ) |
| 12 | 9 | cv | |- x |
| 13 | 4 12 11 | co | |- ( e ( +g ` g ) x ) |
| 14 | 13 12 | wceq | |- ( e ( +g ` g ) x ) = x |
| 15 | 12 4 11 | co | |- ( x ( +g ` g ) e ) |
| 16 | 15 12 | wceq | |- ( x ( +g ` g ) e ) = x |
| 17 | 14 16 | wa | |- ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) |
| 18 | 17 9 7 | wral | |- A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) |
| 19 | 8 18 | wa | |- ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) |
| 20 | 19 3 | cio | |- ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) |
| 21 | 1 2 20 | cmpt | |- ( g e. _V |-> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) ) |
| 22 | 0 21 | wceq | |- 0g = ( g e. _V |-> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) ) |