This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dfgrlic2.v | |- V = ( Vtx ` G ) |
|
| dfgrlic2.w | |- W = ( Vtx ` H ) |
||
| Assertion | dfgrlic2 | |- ( ( G e. X /\ H e. Y ) -> ( G ~=lgr H <-> E. f ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfgrlic2.v | |- V = ( Vtx ` G ) |
|
| 2 | dfgrlic2.w | |- W = ( Vtx ` H ) |
|
| 3 | brgrlic | |- ( G ~=lgr H <-> ( G GraphLocIso H ) =/= (/) ) |
|
| 4 | n0 | |- ( ( G GraphLocIso H ) =/= (/) <-> E. f f e. ( G GraphLocIso H ) ) |
|
| 5 | 3 4 | bitri | |- ( G ~=lgr H <-> E. f f e. ( G GraphLocIso H ) ) |
| 6 | 1 2 | isgrlim | |- ( ( G e. X /\ H e. Y /\ f e. _V ) -> ( f e. ( G GraphLocIso H ) <-> ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) ) |
| 7 | 6 | el3v3 | |- ( ( G e. X /\ H e. Y ) -> ( f e. ( G GraphLocIso H ) <-> ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) ) |
| 8 | 7 | exbidv | |- ( ( G e. X /\ H e. Y ) -> ( E. f f e. ( G GraphLocIso H ) <-> E. f ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) ) |
| 9 | 5 8 | bitrid | |- ( ( G e. X /\ H e. Y ) -> ( G ~=lgr H <-> E. f ( f : V -1-1-onto-> W /\ A. v e. V ( G ISubGr ( G ClNeighbVtx v ) ) ~=gr ( H ISubGr ( H ClNeighbVtx ( f ` v ) ) ) ) ) ) |