This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Graph isomorphism is symmetric for hypergraphs. (Contributed by AV, 11-Nov-2022) (Revised by AV, 3-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gricsym | |- ( G e. UHGraph -> ( G ~=gr S -> S ~=gr G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgric | |- ( G ~=gr S <-> ( G GraphIso S ) =/= (/) ) |
|
| 2 | n0 | |- ( ( G GraphIso S ) =/= (/) <-> E. f f e. ( G GraphIso S ) ) |
|
| 3 | 1 2 | bitri | |- ( G ~=gr S <-> E. f f e. ( G GraphIso S ) ) |
| 4 | grimcnv | |- ( G e. UHGraph -> ( f e. ( G GraphIso S ) -> `' f e. ( S GraphIso G ) ) ) |
|
| 5 | brgrici | |- ( `' f e. ( S GraphIso G ) -> S ~=gr G ) |
|
| 6 | 4 5 | syl6 | |- ( G e. UHGraph -> ( f e. ( G GraphIso S ) -> S ~=gr G ) ) |
| 7 | 6 | exlimdv | |- ( G e. UHGraph -> ( E. f f e. ( G GraphIso S ) -> S ~=gr G ) ) |
| 8 | 3 7 | biimtrid | |- ( G e. UHGraph -> ( G ~=gr S -> S ~=gr G ) ) |