This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gicer | |- ~=g Er Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gic | |- ~=g = ( `' GrpIso " ( _V \ 1o ) ) |
|
| 2 | cnvimass | |- ( `' GrpIso " ( _V \ 1o ) ) C_ dom GrpIso |
|
| 3 | gimfn | |- GrpIso Fn ( Grp X. Grp ) |
|
| 4 | 3 | fndmi | |- dom GrpIso = ( Grp X. Grp ) |
| 5 | 2 4 | sseqtri | |- ( `' GrpIso " ( _V \ 1o ) ) C_ ( Grp X. Grp ) |
| 6 | 1 5 | eqsstri | |- ~=g C_ ( Grp X. Grp ) |
| 7 | relxp | |- Rel ( Grp X. Grp ) |
|
| 8 | relss | |- ( ~=g C_ ( Grp X. Grp ) -> ( Rel ( Grp X. Grp ) -> Rel ~=g ) ) |
|
| 9 | 6 7 8 | mp2 | |- Rel ~=g |
| 10 | gicsym | |- ( x ~=g y -> y ~=g x ) |
|
| 11 | gictr | |- ( ( x ~=g y /\ y ~=g z ) -> x ~=g z ) |
|
| 12 | gicref | |- ( x e. Grp -> x ~=g x ) |
|
| 13 | giclcl | |- ( x ~=g x -> x e. Grp ) |
|
| 14 | 12 13 | impbii | |- ( x e. Grp <-> x ~=g x ) |
| 15 | 9 10 11 14 | iseri | |- ~=g Er Grp |