This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is transitive. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gictr | |- ( ( R ~=g S /\ S ~=g T ) -> R ~=g T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgic | |- ( R ~=g S <-> ( R GrpIso S ) =/= (/) ) |
|
| 2 | brgic | |- ( S ~=g T <-> ( S GrpIso T ) =/= (/) ) |
|
| 3 | n0 | |- ( ( R GrpIso S ) =/= (/) <-> E. f f e. ( R GrpIso S ) ) |
|
| 4 | n0 | |- ( ( S GrpIso T ) =/= (/) <-> E. g g e. ( S GrpIso T ) ) |
|
| 5 | exdistrv | |- ( E. f E. g ( f e. ( R GrpIso S ) /\ g e. ( S GrpIso T ) ) <-> ( E. f f e. ( R GrpIso S ) /\ E. g g e. ( S GrpIso T ) ) ) |
|
| 6 | gimco | |- ( ( g e. ( S GrpIso T ) /\ f e. ( R GrpIso S ) ) -> ( g o. f ) e. ( R GrpIso T ) ) |
|
| 7 | brgici | |- ( ( g o. f ) e. ( R GrpIso T ) -> R ~=g T ) |
|
| 8 | 6 7 | syl | |- ( ( g e. ( S GrpIso T ) /\ f e. ( R GrpIso S ) ) -> R ~=g T ) |
| 9 | 8 | ancoms | |- ( ( f e. ( R GrpIso S ) /\ g e. ( S GrpIso T ) ) -> R ~=g T ) |
| 10 | 9 | exlimivv | |- ( E. f E. g ( f e. ( R GrpIso S ) /\ g e. ( S GrpIso T ) ) -> R ~=g T ) |
| 11 | 5 10 | sylbir | |- ( ( E. f f e. ( R GrpIso S ) /\ E. g g e. ( S GrpIso T ) ) -> R ~=g T ) |
| 12 | 3 4 11 | syl2anb | |- ( ( ( R GrpIso S ) =/= (/) /\ ( S GrpIso T ) =/= (/) ) -> R ~=g T ) |
| 13 | 1 2 12 | syl2anb | |- ( ( R ~=g S /\ S ~=g T ) -> R ~=g T ) |