This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gicer |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gic | ||
| 2 | cnvimass | ||
| 3 | gimfn | ||
| 4 | 3 | fndmi | |
| 5 | 2 4 | sseqtri | |
| 6 | 1 5 | eqsstri | |
| 7 | relxp | ||
| 8 | relss | ||
| 9 | 6 7 8 | mp2 | |
| 10 | gicsym | ||
| 11 | gictr | ||
| 12 | gicref | ||
| 13 | giclcl | ||
| 14 | 12 13 | impbii | |
| 15 | 9 10 11 14 | iseri |