This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gicer | ⊢ ≃𝑔 Er Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-gic | ⊢ ≃𝑔 = ( ◡ GrpIso “ ( V ∖ 1o ) ) | |
| 2 | cnvimass | ⊢ ( ◡ GrpIso “ ( V ∖ 1o ) ) ⊆ dom GrpIso | |
| 3 | gimfn | ⊢ GrpIso Fn ( Grp × Grp ) | |
| 4 | 3 | fndmi | ⊢ dom GrpIso = ( Grp × Grp ) |
| 5 | 2 4 | sseqtri | ⊢ ( ◡ GrpIso “ ( V ∖ 1o ) ) ⊆ ( Grp × Grp ) |
| 6 | 1 5 | eqsstri | ⊢ ≃𝑔 ⊆ ( Grp × Grp ) |
| 7 | relxp | ⊢ Rel ( Grp × Grp ) | |
| 8 | relss | ⊢ ( ≃𝑔 ⊆ ( Grp × Grp ) → ( Rel ( Grp × Grp ) → Rel ≃𝑔 ) ) | |
| 9 | 6 7 8 | mp2 | ⊢ Rel ≃𝑔 |
| 10 | gicsym | ⊢ ( 𝑥 ≃𝑔 𝑦 → 𝑦 ≃𝑔 𝑥 ) | |
| 11 | gictr | ⊢ ( ( 𝑥 ≃𝑔 𝑦 ∧ 𝑦 ≃𝑔 𝑧 ) → 𝑥 ≃𝑔 𝑧 ) | |
| 12 | gicref | ⊢ ( 𝑥 ∈ Grp → 𝑥 ≃𝑔 𝑥 ) | |
| 13 | giclcl | ⊢ ( 𝑥 ≃𝑔 𝑥 → 𝑥 ∈ Grp ) | |
| 14 | 12 13 | impbii | ⊢ ( 𝑥 ∈ Grp ↔ 𝑥 ≃𝑔 𝑥 ) |
| 15 | 9 10 11 14 | iseri | ⊢ ≃𝑔 Er Grp |