This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gicen.b | |- B = ( Base ` R ) |
|
| gicen.c | |- C = ( Base ` S ) |
||
| Assertion | gicen | |- ( R ~=g S -> B ~~ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gicen.b | |- B = ( Base ` R ) |
|
| 2 | gicen.c | |- C = ( Base ` S ) |
|
| 3 | brgic | |- ( R ~=g S <-> ( R GrpIso S ) =/= (/) ) |
|
| 4 | n0 | |- ( ( R GrpIso S ) =/= (/) <-> E. f f e. ( R GrpIso S ) ) |
|
| 5 | 1 2 | gimf1o | |- ( f e. ( R GrpIso S ) -> f : B -1-1-onto-> C ) |
| 6 | 1 | fvexi | |- B e. _V |
| 7 | 6 | f1oen | |- ( f : B -1-1-onto-> C -> B ~~ C ) |
| 8 | 5 7 | syl | |- ( f e. ( R GrpIso S ) -> B ~~ C ) |
| 9 | 8 | exlimiv | |- ( E. f f e. ( R GrpIso S ) -> B ~~ C ) |
| 10 | 4 9 | sylbi | |- ( ( R GrpIso S ) =/= (/) -> B ~~ C ) |
| 11 | 3 10 | sylbi | |- ( R ~=g S -> B ~~ C ) |