This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is reflexive. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gicref | |- ( R e. Grp -> R ~=g R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 2 | 1 | idghm | |- ( R e. Grp -> ( _I |` ( Base ` R ) ) e. ( R GrpHom R ) ) |
| 3 | cnvresid | |- `' ( _I |` ( Base ` R ) ) = ( _I |` ( Base ` R ) ) |
|
| 4 | 3 2 | eqeltrid | |- ( R e. Grp -> `' ( _I |` ( Base ` R ) ) e. ( R GrpHom R ) ) |
| 5 | isgim2 | |- ( ( _I |` ( Base ` R ) ) e. ( R GrpIso R ) <-> ( ( _I |` ( Base ` R ) ) e. ( R GrpHom R ) /\ `' ( _I |` ( Base ` R ) ) e. ( R GrpHom R ) ) ) |
|
| 6 | 2 4 5 | sylanbrc | |- ( R e. Grp -> ( _I |` ( Base ` R ) ) e. ( R GrpIso R ) ) |
| 7 | brgici | |- ( ( _I |` ( Base ` R ) ) e. ( R GrpIso R ) -> R ~=g R ) |
|
| 8 | 6 7 | syl | |- ( R e. Grp -> R ~=g R ) |