This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd of two integers is positive (nonzero) iff they are not both zero. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdn0gt0 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) <-> 0 < ( M gcd N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
|
| 2 | 0re | |- 0 e. RR |
|
| 3 | nn0re | |- ( ( M gcd N ) e. NN0 -> ( M gcd N ) e. RR ) |
|
| 4 | nn0ge0 | |- ( ( M gcd N ) e. NN0 -> 0 <_ ( M gcd N ) ) |
|
| 5 | leltne | |- ( ( 0 e. RR /\ ( M gcd N ) e. RR /\ 0 <_ ( M gcd N ) ) -> ( 0 < ( M gcd N ) <-> ( M gcd N ) =/= 0 ) ) |
|
| 6 | 2 3 4 5 | mp3an2i | |- ( ( M gcd N ) e. NN0 -> ( 0 < ( M gcd N ) <-> ( M gcd N ) =/= 0 ) ) |
| 7 | 1 6 | syl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 < ( M gcd N ) <-> ( M gcd N ) =/= 0 ) ) |
| 8 | gcdeq0 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) = 0 <-> ( M = 0 /\ N = 0 ) ) ) |
|
| 9 | 8 | necon3abid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) =/= 0 <-> -. ( M = 0 /\ N = 0 ) ) ) |
| 10 | 7 9 | bitr2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) <-> 0 < ( M gcd N ) ) ) |