This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The gcd of two integers is positive (nonzero) iff they are not both zero. (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdn0gt0 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ↔ 0 < ( 𝑀 gcd 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ0 ) | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | nn0re | ⊢ ( ( 𝑀 gcd 𝑁 ) ∈ ℕ0 → ( 𝑀 gcd 𝑁 ) ∈ ℝ ) | |
| 4 | nn0ge0 | ⊢ ( ( 𝑀 gcd 𝑁 ) ∈ ℕ0 → 0 ≤ ( 𝑀 gcd 𝑁 ) ) | |
| 5 | leltne | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝑀 gcd 𝑁 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 gcd 𝑁 ) ) → ( 0 < ( 𝑀 gcd 𝑁 ) ↔ ( 𝑀 gcd 𝑁 ) ≠ 0 ) ) | |
| 6 | 2 3 4 5 | mp3an2i | ⊢ ( ( 𝑀 gcd 𝑁 ) ∈ ℕ0 → ( 0 < ( 𝑀 gcd 𝑁 ) ↔ ( 𝑀 gcd 𝑁 ) ≠ 0 ) ) |
| 7 | 1 6 | syl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 < ( 𝑀 gcd 𝑁 ) ↔ ( 𝑀 gcd 𝑁 ) ≠ 0 ) ) |
| 8 | gcdeq0 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) = 0 ↔ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) | |
| 9 | 8 | necon3abid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ≠ 0 ↔ ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ) ) |
| 10 | 7 9 | bitr2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∧ 𝑁 = 0 ) ↔ 0 < ( 𝑀 gcd 𝑁 ) ) ) |