This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity of the group does not alter the base set. (Contributed by Jeff Hankins, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gagrpid.1 | |- .0. = ( 0g ` G ) |
|
| Assertion | gagrpid | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> ( .0. .(+) A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gagrpid.1 | |- .0. = ( 0g ` G ) |
|
| 2 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 3 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 4 | 2 3 1 | isga | |- ( .(+) e. ( G GrpAct Y ) <-> ( ( G e. Grp /\ Y e. _V ) /\ ( .(+) : ( ( Base ` G ) X. Y ) --> Y /\ A. x e. Y ( ( .0. .(+) x ) = x /\ A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( y ( +g ` G ) z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) ) |
| 5 | 4 | simprbi | |- ( .(+) e. ( G GrpAct Y ) -> ( .(+) : ( ( Base ` G ) X. Y ) --> Y /\ A. x e. Y ( ( .0. .(+) x ) = x /\ A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( y ( +g ` G ) z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) ) ) |
| 6 | simpl | |- ( ( ( .0. .(+) x ) = x /\ A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( y ( +g ` G ) z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) -> ( .0. .(+) x ) = x ) |
|
| 7 | 6 | ralimi | |- ( A. x e. Y ( ( .0. .(+) x ) = x /\ A. y e. ( Base ` G ) A. z e. ( Base ` G ) ( ( y ( +g ` G ) z ) .(+) x ) = ( y .(+) ( z .(+) x ) ) ) -> A. x e. Y ( .0. .(+) x ) = x ) |
| 8 | 5 7 | simpl2im | |- ( .(+) e. ( G GrpAct Y ) -> A. x e. Y ( .0. .(+) x ) = x ) |
| 9 | oveq2 | |- ( x = A -> ( .0. .(+) x ) = ( .0. .(+) A ) ) |
|
| 10 | id | |- ( x = A -> x = A ) |
|
| 11 | 9 10 | eqeq12d | |- ( x = A -> ( ( .0. .(+) x ) = x <-> ( .0. .(+) A ) = A ) ) |
| 12 | 11 | rspccva | |- ( ( A. x e. Y ( .0. .(+) x ) = x /\ A e. Y ) -> ( .0. .(+) A ) = A ) |
| 13 | 8 12 | sylan | |- ( ( .(+) e. ( G GrpAct Y ) /\ A e. Y ) -> ( .0. .(+) A ) = A ) |