This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group inverses cancel in a group action. (Contributed by Jeff Hankins, 11-Aug-2009) (Revised by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | galcan.1 | |- X = ( Base ` G ) |
|
| gacan.2 | |- N = ( invg ` G ) |
||
| Assertion | gacan | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( A .(+) B ) = C <-> ( ( N ` A ) .(+) C ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | galcan.1 | |- X = ( Base ` G ) |
|
| 2 | gacan.2 | |- N = ( invg ` G ) |
|
| 3 | gagrp | |- ( .(+) e. ( G GrpAct Y ) -> G e. Grp ) |
|
| 4 | 3 | adantr | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> G e. Grp ) |
| 5 | simpr1 | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> A e. X ) |
|
| 6 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 7 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 8 | 1 6 7 2 | grprinv | |- ( ( G e. Grp /\ A e. X ) -> ( A ( +g ` G ) ( N ` A ) ) = ( 0g ` G ) ) |
| 9 | 4 5 8 | syl2anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( A ( +g ` G ) ( N ` A ) ) = ( 0g ` G ) ) |
| 10 | 9 | oveq1d | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( A ( +g ` G ) ( N ` A ) ) .(+) C ) = ( ( 0g ` G ) .(+) C ) ) |
| 11 | simpl | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> .(+) e. ( G GrpAct Y ) ) |
|
| 12 | 1 2 | grpinvcl | |- ( ( G e. Grp /\ A e. X ) -> ( N ` A ) e. X ) |
| 13 | 4 5 12 | syl2anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( N ` A ) e. X ) |
| 14 | simpr3 | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> C e. Y ) |
|
| 15 | 1 6 | gaass | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ ( N ` A ) e. X /\ C e. Y ) ) -> ( ( A ( +g ` G ) ( N ` A ) ) .(+) C ) = ( A .(+) ( ( N ` A ) .(+) C ) ) ) |
| 16 | 11 5 13 14 15 | syl13anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( A ( +g ` G ) ( N ` A ) ) .(+) C ) = ( A .(+) ( ( N ` A ) .(+) C ) ) ) |
| 17 | 7 | gagrpid | |- ( ( .(+) e. ( G GrpAct Y ) /\ C e. Y ) -> ( ( 0g ` G ) .(+) C ) = C ) |
| 18 | 11 14 17 | syl2anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( 0g ` G ) .(+) C ) = C ) |
| 19 | 10 16 18 | 3eqtr3d | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( A .(+) ( ( N ` A ) .(+) C ) ) = C ) |
| 20 | 19 | eqeq2d | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( A .(+) B ) = ( A .(+) ( ( N ` A ) .(+) C ) ) <-> ( A .(+) B ) = C ) ) |
| 21 | simpr2 | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> B e. Y ) |
|
| 22 | 1 | gaf | |- ( .(+) e. ( G GrpAct Y ) -> .(+) : ( X X. Y ) --> Y ) |
| 23 | 22 | adantr | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> .(+) : ( X X. Y ) --> Y ) |
| 24 | 23 13 14 | fovcdmd | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( N ` A ) .(+) C ) e. Y ) |
| 25 | 1 | galcan | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ ( ( N ` A ) .(+) C ) e. Y ) ) -> ( ( A .(+) B ) = ( A .(+) ( ( N ` A ) .(+) C ) ) <-> B = ( ( N ` A ) .(+) C ) ) ) |
| 26 | 11 5 21 24 25 | syl13anc | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( A .(+) B ) = ( A .(+) ( ( N ` A ) .(+) C ) ) <-> B = ( ( N ` A ) .(+) C ) ) ) |
| 27 | 20 26 | bitr3d | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( A .(+) B ) = C <-> B = ( ( N ` A ) .(+) C ) ) ) |
| 28 | eqcom | |- ( B = ( ( N ` A ) .(+) C ) <-> ( ( N ` A ) .(+) C ) = B ) |
|
| 29 | 27 28 | bitrdi | |- ( ( .(+) e. ( G GrpAct Y ) /\ ( A e. X /\ B e. Y /\ C e. Y ) ) -> ( ( A .(+) B ) = C <-> ( ( N ` A ) .(+) C ) = B ) ) |