This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gaorb.1 | ||
| Assertion | gaorb |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gaorb.1 | ||
| 2 | oveq2 | ||
| 3 | eqeq12 | ||
| 4 | 2 3 | sylan | |
| 5 | 4 | rexbidv | |
| 6 | oveq1 | ||
| 7 | 6 | eqeq1d | |
| 8 | 7 | cbvrexvw | |
| 9 | 5 8 | bitrdi | |
| 10 | vex | ||
| 11 | vex | ||
| 12 | 10 11 | prss | |
| 13 | 12 | anbi1i | |
| 14 | 13 | opabbii | |
| 15 | 1 14 | eqtr4i | |
| 16 | 9 15 | brab2a | |
| 17 | df-3an | ||
| 18 | 16 17 | bitr4i |