This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shift the scanning order inside of a universal quantification restricted to a half-open integer range, analogous to fzshftral . (Contributed by Alexander van der Vekens, 23-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoshftral | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( M ..^ N ) ph <-> A. k e. ( ( M + K ) ..^ ( N + K ) ) [. ( k - K ) / j ]. ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzoval | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
|
| 2 | 1 | 3ad2ant2 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 3 | 2 | raleqdv | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( M ..^ N ) ph <-> A. j e. ( M ... ( N - 1 ) ) ph ) ) |
| 4 | peano2zm | |- ( N e. ZZ -> ( N - 1 ) e. ZZ ) |
|
| 5 | fzshftral | |- ( ( M e. ZZ /\ ( N - 1 ) e. ZZ /\ K e. ZZ ) -> ( A. j e. ( M ... ( N - 1 ) ) ph <-> A. k e. ( ( M + K ) ... ( ( N - 1 ) + K ) ) [. ( k - K ) / j ]. ph ) ) |
|
| 6 | 4 5 | syl3an2 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( M ... ( N - 1 ) ) ph <-> A. k e. ( ( M + K ) ... ( ( N - 1 ) + K ) ) [. ( k - K ) / j ]. ph ) ) |
| 7 | zaddcl | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N + K ) e. ZZ ) |
|
| 8 | 7 | 3adant1 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( N + K ) e. ZZ ) |
| 9 | fzoval | |- ( ( N + K ) e. ZZ -> ( ( M + K ) ..^ ( N + K ) ) = ( ( M + K ) ... ( ( N + K ) - 1 ) ) ) |
|
| 10 | 8 9 | syl | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( M + K ) ..^ ( N + K ) ) = ( ( M + K ) ... ( ( N + K ) - 1 ) ) ) |
| 11 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 12 | 11 | adantr | |- ( ( N e. ZZ /\ K e. ZZ ) -> N e. CC ) |
| 13 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 14 | 13 | adantl | |- ( ( N e. ZZ /\ K e. ZZ ) -> K e. CC ) |
| 15 | 1cnd | |- ( ( N e. ZZ /\ K e. ZZ ) -> 1 e. CC ) |
|
| 16 | 12 14 15 | addsubd | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( ( N + K ) - 1 ) = ( ( N - 1 ) + K ) ) |
| 17 | 16 | 3adant1 | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( N + K ) - 1 ) = ( ( N - 1 ) + K ) ) |
| 18 | 17 | oveq2d | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( M + K ) ... ( ( N + K ) - 1 ) ) = ( ( M + K ) ... ( ( N - 1 ) + K ) ) ) |
| 19 | 10 18 | eqtr2d | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( ( M + K ) ... ( ( N - 1 ) + K ) ) = ( ( M + K ) ..^ ( N + K ) ) ) |
| 20 | 19 | raleqdv | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. k e. ( ( M + K ) ... ( ( N - 1 ) + K ) ) [. ( k - K ) / j ]. ph <-> A. k e. ( ( M + K ) ..^ ( N + K ) ) [. ( k - K ) / j ]. ph ) ) |
| 21 | 3 6 20 | 3bitrd | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( A. j e. ( M ..^ N ) ph <-> A. k e. ( ( M + K ) ..^ ( N + K ) ) [. ( k - K ) / j ]. ph ) ) |