This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A half-open range of nonnegative integers is empty iff the upper bound is not positive. (Contributed by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo0n | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N <_ M <-> ( 0 ..^ ( N - M ) ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 2 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 3 | suble0 | |- ( ( N e. RR /\ M e. RR ) -> ( ( N - M ) <_ 0 <-> N <_ M ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N - M ) <_ 0 <-> N <_ M ) ) |
| 5 | 0z | |- 0 e. ZZ |
|
| 6 | zsubcl | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N - M ) e. ZZ ) |
|
| 7 | fzon | |- ( ( 0 e. ZZ /\ ( N - M ) e. ZZ ) -> ( ( N - M ) <_ 0 <-> ( 0 ..^ ( N - M ) ) = (/) ) ) |
|
| 8 | 5 6 7 | sylancr | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( N - M ) <_ 0 <-> ( 0 ..^ ( N - M ) ) = (/) ) ) |
| 9 | 4 8 | bitr3d | |- ( ( N e. ZZ /\ M e. ZZ ) -> ( N <_ M <-> ( 0 ..^ ( N - M ) ) = (/) ) ) |
| 10 | 9 | ancoms | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N <_ M <-> ( 0 ..^ ( N - M ) ) = (/) ) ) |