This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite interval of integers with two elements. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzpr | |- ( M e. ZZ -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 2 | elfzp1 | |- ( M e. ( ZZ>= ` M ) -> ( m e. ( M ... ( M + 1 ) ) <-> ( m e. ( M ... M ) \/ m = ( M + 1 ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( M e. ZZ -> ( m e. ( M ... ( M + 1 ) ) <-> ( m e. ( M ... M ) \/ m = ( M + 1 ) ) ) ) |
| 4 | fzsn | |- ( M e. ZZ -> ( M ... M ) = { M } ) |
|
| 5 | 4 | eleq2d | |- ( M e. ZZ -> ( m e. ( M ... M ) <-> m e. { M } ) ) |
| 6 | velsn | |- ( m e. { M } <-> m = M ) |
|
| 7 | 5 6 | bitrdi | |- ( M e. ZZ -> ( m e. ( M ... M ) <-> m = M ) ) |
| 8 | 7 | orbi1d | |- ( M e. ZZ -> ( ( m e. ( M ... M ) \/ m = ( M + 1 ) ) <-> ( m = M \/ m = ( M + 1 ) ) ) ) |
| 9 | 3 8 | bitrd | |- ( M e. ZZ -> ( m e. ( M ... ( M + 1 ) ) <-> ( m = M \/ m = ( M + 1 ) ) ) ) |
| 10 | vex | |- m e. _V |
|
| 11 | 10 | elpr | |- ( m e. { M , ( M + 1 ) } <-> ( m = M \/ m = ( M + 1 ) ) ) |
| 12 | 9 11 | bitr4di | |- ( M e. ZZ -> ( m e. ( M ... ( M + 1 ) ) <-> m e. { M , ( M + 1 ) } ) ) |
| 13 | 12 | eqrdv | |- ( M e. ZZ -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |