This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer range from 0 to 5 is the union of two triples. (Contributed by AV, 30-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz0to5un2tp | |- ( 0 ... 5 ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 2 | 0z | |- 0 e. ZZ |
|
| 3 | 3z | |- 3 e. ZZ |
|
| 4 | 0re | |- 0 e. RR |
|
| 5 | 3re | |- 3 e. RR |
|
| 6 | 3pos | |- 0 < 3 |
|
| 7 | 4 5 6 | ltleii | |- 0 <_ 3 |
| 8 | eluz2 | |- ( 3 e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ 3 e. ZZ /\ 0 <_ 3 ) ) |
|
| 9 | 2 3 7 8 | mpbir3an | |- 3 e. ( ZZ>= ` 0 ) |
| 10 | 1 9 | eqeltri | |- ( 2 + 1 ) e. ( ZZ>= ` 0 ) |
| 11 | 2z | |- 2 e. ZZ |
|
| 12 | 5nn0 | |- 5 e. NN0 |
|
| 13 | 12 | nn0zi | |- 5 e. ZZ |
| 14 | 2re | |- 2 e. RR |
|
| 15 | 5re | |- 5 e. RR |
|
| 16 | 2lt5 | |- 2 < 5 |
|
| 17 | 14 15 16 | ltleii | |- 2 <_ 5 |
| 18 | eluz2 | |- ( 5 e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ 5 e. ZZ /\ 2 <_ 5 ) ) |
|
| 19 | 11 13 17 18 | mpbir3an | |- 5 e. ( ZZ>= ` 2 ) |
| 20 | fzsplit2 | |- ( ( ( 2 + 1 ) e. ( ZZ>= ` 0 ) /\ 5 e. ( ZZ>= ` 2 ) ) -> ( 0 ... 5 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 5 ) ) ) |
|
| 21 | 10 19 20 | mp2an | |- ( 0 ... 5 ) = ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 5 ) ) |
| 22 | fz0tp | |- ( 0 ... 2 ) = { 0 , 1 , 2 } |
|
| 23 | 1 | oveq1i | |- ( ( 2 + 1 ) ... 5 ) = ( 3 ... 5 ) |
| 24 | 3p2e5 | |- ( 3 + 2 ) = 5 |
|
| 25 | 24 | eqcomi | |- 5 = ( 3 + 2 ) |
| 26 | 25 | oveq2i | |- ( 3 ... 5 ) = ( 3 ... ( 3 + 2 ) ) |
| 27 | fztp | |- ( 3 e. ZZ -> ( 3 ... ( 3 + 2 ) ) = { 3 , ( 3 + 1 ) , ( 3 + 2 ) } ) |
|
| 28 | 3 27 | ax-mp | |- ( 3 ... ( 3 + 2 ) ) = { 3 , ( 3 + 1 ) , ( 3 + 2 ) } |
| 29 | eqid | |- 3 = 3 |
|
| 30 | id | |- ( 3 = 3 -> 3 = 3 ) |
|
| 31 | 3p1e4 | |- ( 3 + 1 ) = 4 |
|
| 32 | 31 | a1i | |- ( 3 = 3 -> ( 3 + 1 ) = 4 ) |
| 33 | 24 | a1i | |- ( 3 = 3 -> ( 3 + 2 ) = 5 ) |
| 34 | 30 32 33 | tpeq123d | |- ( 3 = 3 -> { 3 , ( 3 + 1 ) , ( 3 + 2 ) } = { 3 , 4 , 5 } ) |
| 35 | 29 34 | ax-mp | |- { 3 , ( 3 + 1 ) , ( 3 + 2 ) } = { 3 , 4 , 5 } |
| 36 | 26 28 35 | 3eqtri | |- ( 3 ... 5 ) = { 3 , 4 , 5 } |
| 37 | 23 36 | eqtri | |- ( ( 2 + 1 ) ... 5 ) = { 3 , 4 , 5 } |
| 38 | 22 37 | uneq12i | |- ( ( 0 ... 2 ) u. ( ( 2 + 1 ) ... 5 ) ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) |
| 39 | 21 38 | eqtri | |- ( 0 ... 5 ) = ( { 0 , 1 , 2 } u. { 3 , 4 , 5 } ) |