This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor to a thin category is determined entirely by the object part. (Contributed by Zhi Wang, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functhincfun.d | |- ( ph -> C e. Cat ) |
|
| functhincfun.e | |- ( ph -> D e. ThinCat ) |
||
| Assertion | functhincfun | |- ( ph -> Fun ( C Func D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhincfun.d | |- ( ph -> C e. Cat ) |
|
| 2 | functhincfun.e | |- ( ph -> D e. ThinCat ) |
|
| 3 | relfunc | |- Rel ( C Func D ) |
|
| 4 | simprl | |- ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) -> f ( C Func D ) g ) |
|
| 5 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 6 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 7 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 8 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 9 | 1 | adantr | |- ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) -> C e. Cat ) |
| 10 | 2 | adantr | |- ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) -> D e. ThinCat ) |
| 11 | 5 6 4 | funcf1 | |- ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) -> f : ( Base ` C ) --> ( Base ` D ) ) |
| 12 | eqid | |- ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) |
|
| 13 | simplrl | |- ( ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> f ( C Func D ) g ) |
|
| 14 | simprl | |- ( ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 15 | simprr | |- ( ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 16 | 5 7 8 13 14 15 | funcf2 | |- ( ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x g y ) : ( x ( Hom ` C ) y ) --> ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) |
| 17 | 16 | f002 | |- ( ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) = (/) -> ( x ( Hom ` C ) y ) = (/) ) ) |
| 18 | 17 | ralrimivva | |- ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) = (/) -> ( x ( Hom ` C ) y ) = (/) ) ) |
| 19 | 5 6 7 8 9 10 11 12 18 | functhinc | |- ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) -> ( f ( C Func D ) g <-> g = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) ) ) |
| 20 | 4 19 | mpbid | |- ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) -> g = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) ) |
| 21 | simprr | |- ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) -> f ( C Func D ) h ) |
|
| 22 | 5 6 7 8 9 10 11 12 18 | functhinc | |- ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) -> ( f ( C Func D ) h <-> h = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) ) ) |
| 23 | 21 22 | mpbid | |- ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) -> h = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( ( x ( Hom ` C ) y ) X. ( ( f ` x ) ( Hom ` D ) ( f ` y ) ) ) ) ) |
| 24 | 20 23 | eqtr4d | |- ( ( ph /\ ( f ( C Func D ) g /\ f ( C Func D ) h ) ) -> g = h ) |
| 25 | 24 | ex | |- ( ph -> ( ( f ( C Func D ) g /\ f ( C Func D ) h ) -> g = h ) ) |
| 26 | 25 | alrimivv | |- ( ph -> A. g A. h ( ( f ( C Func D ) g /\ f ( C Func D ) h ) -> g = h ) ) |
| 27 | 26 | alrimiv | |- ( ph -> A. f A. g A. h ( ( f ( C Func D ) g /\ f ( C Func D ) h ) -> g = h ) ) |
| 28 | dffun2 | |- ( Fun ( C Func D ) <-> ( Rel ( C Func D ) /\ A. f A. g A. h ( ( f ( C Func D ) g /\ f ( C Func D ) h ) -> g = h ) ) ) |
|
| 29 | 28 | biimpri | |- ( ( Rel ( C Func D ) /\ A. f A. g A. h ( ( f ( C Func D ) g /\ f ( C Func D ) h ) -> g = h ) ) -> Fun ( C Func D ) ) |
| 30 | 3 27 29 | sylancr | |- ( ph -> Fun ( C Func D ) ) |