This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constructed one-slot structure with the objects of the category of sets as base set in a weak universe. (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setc1strwun.s | |- S = ( SetCat ` U ) |
|
| setc1strwun.c | |- C = ( Base ` S ) |
||
| setc1strwun.u | |- ( ph -> U e. WUni ) |
||
| setc1strwun.o | |- ( ph -> _om e. U ) |
||
| Assertion | setc1strwun | |- ( ( ph /\ X e. C ) -> { <. ( Base ` ndx ) , X >. } e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setc1strwun.s | |- S = ( SetCat ` U ) |
|
| 2 | setc1strwun.c | |- C = ( Base ` S ) |
|
| 3 | setc1strwun.u | |- ( ph -> U e. WUni ) |
|
| 4 | setc1strwun.o | |- ( ph -> _om e. U ) |
|
| 5 | 1 3 | setcbas | |- ( ph -> U = ( Base ` S ) ) |
| 6 | 2 5 | eqtr4id | |- ( ph -> C = U ) |
| 7 | 6 | eleq2d | |- ( ph -> ( X e. C <-> X e. U ) ) |
| 8 | 7 | biimpa | |- ( ( ph /\ X e. C ) -> X e. U ) |
| 9 | eqid | |- { <. ( Base ` ndx ) , X >. } = { <. ( Base ` ndx ) , X >. } |
|
| 10 | 9 3 4 | 1strwun | |- ( ( ph /\ X e. U ) -> { <. ( Base ` ndx ) , X >. } e. U ) |
| 11 | 8 10 | syldan | |- ( ( ph /\ X e. C ) -> { <. ( Base ` ndx ) , X >. } e. U ) |