This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 5 for funcsetcestrc . (Contributed by AV, 27-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
| funcsetcestrc.c | |- C = ( Base ` S ) |
||
| funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
||
| funcsetcestrc.u | |- ( ph -> U e. WUni ) |
||
| funcsetcestrc.o | |- ( ph -> _om e. U ) |
||
| funcsetcestrc.g | |- ( ph -> G = ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) ) |
||
| Assertion | funcsetcestrclem5 | |- ( ( ph /\ ( X e. C /\ Y e. C ) ) -> ( X G Y ) = ( _I |` ( Y ^m X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcsetcestrc.s | |- S = ( SetCat ` U ) |
|
| 2 | funcsetcestrc.c | |- C = ( Base ` S ) |
|
| 3 | funcsetcestrc.f | |- ( ph -> F = ( x e. C |-> { <. ( Base ` ndx ) , x >. } ) ) |
|
| 4 | funcsetcestrc.u | |- ( ph -> U e. WUni ) |
|
| 5 | funcsetcestrc.o | |- ( ph -> _om e. U ) |
|
| 6 | funcsetcestrc.g | |- ( ph -> G = ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) ) |
|
| 7 | 6 | adantr | |- ( ( ph /\ ( X e. C /\ Y e. C ) ) -> G = ( x e. C , y e. C |-> ( _I |` ( y ^m x ) ) ) ) |
| 8 | oveq12 | |- ( ( y = Y /\ x = X ) -> ( y ^m x ) = ( Y ^m X ) ) |
|
| 9 | 8 | ancoms | |- ( ( x = X /\ y = Y ) -> ( y ^m x ) = ( Y ^m X ) ) |
| 10 | 9 | reseq2d | |- ( ( x = X /\ y = Y ) -> ( _I |` ( y ^m x ) ) = ( _I |` ( Y ^m X ) ) ) |
| 11 | 10 | adantl | |- ( ( ( ph /\ ( X e. C /\ Y e. C ) ) /\ ( x = X /\ y = Y ) ) -> ( _I |` ( y ^m x ) ) = ( _I |` ( Y ^m X ) ) ) |
| 12 | simprl | |- ( ( ph /\ ( X e. C /\ Y e. C ) ) -> X e. C ) |
|
| 13 | simprr | |- ( ( ph /\ ( X e. C /\ Y e. C ) ) -> Y e. C ) |
|
| 14 | ovexd | |- ( ( ph /\ ( X e. C /\ Y e. C ) ) -> ( Y ^m X ) e. _V ) |
|
| 15 | 14 | resiexd | |- ( ( ph /\ ( X e. C /\ Y e. C ) ) -> ( _I |` ( Y ^m X ) ) e. _V ) |
| 16 | 7 11 12 13 15 | ovmpod | |- ( ( ph /\ ( X e. C /\ Y e. C ) ) -> ( X G Y ) = ( _I |` ( Y ^m X ) ) ) |