This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite functor of a full functor is also full. Proposition 3.43(d) in Adamek p. 39. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fulloppc.o | |- O = ( oppCat ` C ) |
|
| fulloppc.p | |- P = ( oppCat ` D ) |
||
| fulloppc.f | |- ( ph -> F ( C Full D ) G ) |
||
| Assertion | fulloppc | |- ( ph -> F ( O Full P ) tpos G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulloppc.o | |- O = ( oppCat ` C ) |
|
| 2 | fulloppc.p | |- P = ( oppCat ` D ) |
|
| 3 | fulloppc.f | |- ( ph -> F ( C Full D ) G ) |
|
| 4 | fullfunc | |- ( C Full D ) C_ ( C Func D ) |
|
| 5 | 4 | ssbri | |- ( F ( C Full D ) G -> F ( C Func D ) G ) |
| 6 | 3 5 | syl | |- ( ph -> F ( C Func D ) G ) |
| 7 | 1 2 6 | funcoppc | |- ( ph -> F ( O Func P ) tpos G ) |
| 8 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 9 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 10 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 11 | 3 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F ( C Full D ) G ) |
| 12 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 13 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 14 | 8 9 10 11 12 13 | fullfo | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( y G x ) : ( y ( Hom ` C ) x ) -onto-> ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) ) |
| 15 | forn | |- ( ( y G x ) : ( y ( Hom ` C ) x ) -onto-> ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) -> ran ( y G x ) = ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) ) |
|
| 16 | 14 15 | syl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ran ( y G x ) = ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) ) |
| 17 | ovtpos | |- ( x tpos G y ) = ( y G x ) |
|
| 18 | 17 | rneqi | |- ran ( x tpos G y ) = ran ( y G x ) |
| 19 | 9 2 | oppchom | |- ( ( F ` x ) ( Hom ` P ) ( F ` y ) ) = ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) |
| 20 | 16 18 19 | 3eqtr4g | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ran ( x tpos G y ) = ( ( F ` x ) ( Hom ` P ) ( F ` y ) ) ) |
| 21 | 20 | ralrimivva | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ran ( x tpos G y ) = ( ( F ` x ) ( Hom ` P ) ( F ` y ) ) ) |
| 22 | 1 8 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 23 | eqid | |- ( Hom ` P ) = ( Hom ` P ) |
|
| 24 | 22 23 | isfull | |- ( F ( O Full P ) tpos G <-> ( F ( O Func P ) tpos G /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ran ( x tpos G y ) = ( ( F ` x ) ( Hom ` P ) ( F ` y ) ) ) ) |
| 25 | 7 21 24 | sylanbrc | |- ( ph -> F ( O Full P ) tpos G ) |