This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite functor of a full functor is also full. Proposition 3.43(d) in Adamek p. 39. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fulloppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| fulloppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | ||
| fulloppc.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) | ||
| Assertion | fulloppc | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Full 𝑃 ) tpos 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulloppc.o | ⊢ 𝑂 = ( oppCat ‘ 𝐶 ) | |
| 2 | fulloppc.p | ⊢ 𝑃 = ( oppCat ‘ 𝐷 ) | |
| 3 | fulloppc.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) | |
| 4 | fullfunc | ⊢ ( 𝐶 Full 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) | |
| 5 | 4 | ssbri | ⊢ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 6 | 3 5 | syl | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 7 | 1 2 6 | funcoppc | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ) |
| 8 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 10 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 11 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
| 12 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 13 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 14 | 8 9 10 11 12 13 | fullfo | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) –onto→ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 15 | forn | ⊢ ( ( 𝑦 𝐺 𝑥 ) : ( 𝑦 ( Hom ‘ 𝐶 ) 𝑥 ) –onto→ ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) → ran ( 𝑦 𝐺 𝑥 ) = ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) | |
| 16 | 14 15 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ran ( 𝑦 𝐺 𝑥 ) = ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 | ovtpos | ⊢ ( 𝑥 tpos 𝐺 𝑦 ) = ( 𝑦 𝐺 𝑥 ) | |
| 18 | 17 | rneqi | ⊢ ran ( 𝑥 tpos 𝐺 𝑦 ) = ran ( 𝑦 𝐺 𝑥 ) |
| 19 | 9 2 | oppchom | ⊢ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑦 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑥 ) ) |
| 20 | 16 18 19 | 3eqtr4g | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ran ( 𝑥 tpos 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 | 20 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ran ( 𝑥 tpos 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 22 | 1 8 | oppcbas | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 23 | eqid | ⊢ ( Hom ‘ 𝑃 ) = ( Hom ‘ 𝑃 ) | |
| 24 | 22 23 | isfull | ⊢ ( 𝐹 ( 𝑂 Full 𝑃 ) tpos 𝐺 ↔ ( 𝐹 ( 𝑂 Func 𝑃 ) tpos 𝐺 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ran ( 𝑥 tpos 𝐺 𝑦 ) = ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝑃 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 25 | 7 21 24 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ( 𝑂 Full 𝑃 ) tpos 𝐺 ) |