This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in Adamek p. 39. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fulloppc.o | |- O = ( oppCat ` C ) |
|
| fulloppc.p | |- P = ( oppCat ` D ) |
||
| fthoppc.f | |- ( ph -> F ( C Faith D ) G ) |
||
| Assertion | fthoppc | |- ( ph -> F ( O Faith P ) tpos G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulloppc.o | |- O = ( oppCat ` C ) |
|
| 2 | fulloppc.p | |- P = ( oppCat ` D ) |
|
| 3 | fthoppc.f | |- ( ph -> F ( C Faith D ) G ) |
|
| 4 | fthfunc | |- ( C Faith D ) C_ ( C Func D ) |
|
| 5 | 4 | ssbri | |- ( F ( C Faith D ) G -> F ( C Func D ) G ) |
| 6 | 3 5 | syl | |- ( ph -> F ( C Func D ) G ) |
| 7 | 1 2 6 | funcoppc | |- ( ph -> F ( O Func P ) tpos G ) |
| 8 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 9 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 10 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 11 | 3 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F ( C Faith D ) G ) |
| 12 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 13 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 14 | 8 9 10 11 12 13 | fthf1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( y G x ) : ( y ( Hom ` C ) x ) -1-1-> ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) ) |
| 15 | df-f1 | |- ( ( y G x ) : ( y ( Hom ` C ) x ) -1-1-> ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) <-> ( ( y G x ) : ( y ( Hom ` C ) x ) --> ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) /\ Fun `' ( y G x ) ) ) |
|
| 16 | 15 | simprbi | |- ( ( y G x ) : ( y ( Hom ` C ) x ) -1-1-> ( ( F ` y ) ( Hom ` D ) ( F ` x ) ) -> Fun `' ( y G x ) ) |
| 17 | 14 16 | syl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> Fun `' ( y G x ) ) |
| 18 | ovtpos | |- ( x tpos G y ) = ( y G x ) |
|
| 19 | 18 | cnveqi | |- `' ( x tpos G y ) = `' ( y G x ) |
| 20 | 19 | funeqi | |- ( Fun `' ( x tpos G y ) <-> Fun `' ( y G x ) ) |
| 21 | 17 20 | sylibr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> Fun `' ( x tpos G y ) ) |
| 22 | 21 | ralrimivva | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x tpos G y ) ) |
| 23 | 1 8 | oppcbas | |- ( Base ` C ) = ( Base ` O ) |
| 24 | 23 | isfth | |- ( F ( O Faith P ) tpos G <-> ( F ( O Func P ) tpos G /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) Fun `' ( x tpos G y ) ) ) |
| 25 | 7 22 24 | sylanbrc | |- ( ph -> F ( O Faith P ) tpos G ) |